Chapter 9

Background

As usual, we denote the natural numbers and the integers by \mathbb{N} and \mathbb{Z} respectively:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\},\$$

 $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$

We also define

$$\overline{\mathbb{N}} := \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, \ldots\}.$$

Clearly, we have that

$$\mathbb{N} \subset \overline{\mathbb{N}} \subset \mathbb{Z}$$
.

We note that addition, multiplication, subtraction and order are defined in \mathbb{Z} and hence can be defined appropriately in \mathbb{N} .

A1: Well-Ordering Principle Every non-empty subset S of \mathbb{N} contains a least element, i.e. $\exists a \in S$ such that

$$a \le x \quad \forall x \in S.$$

A2: Archimedean Property For $a, b \in \mathbb{N}$, $\exists n \in \mathbb{N}$ such that $na \geq b$.

A3: Principle of (Finite) Induction If S is a subset of \mathbb{N} such that

(i)
$$1 \in S$$
, (ii) $k \in S \Rightarrow k+1 \in S$,

then $S = \mathbb{N}$.

Remark 9.1. We have that $A1 \Rightarrow A2$, and that $A1 \Rightarrow A3$.