then

$$\varphi(q) = \varphi(q')$$
.

Suppose that $g, g' \in G$ satisfy (Ker φ) $g = (\text{Ker } \varphi) g'$.

We have that

$$(\operatorname{Ker} \varphi) \, g = (\operatorname{Ker} \varphi) \, g' \Leftrightarrow g \, (g')^{-1} \in \operatorname{Ker} \varphi \qquad \text{from Remark 8.9}$$

$$\Leftrightarrow \varphi \, \Big(g \, (g')^{-1} \Big) = 1_H \qquad \text{by definition of Ker } \varphi$$

$$\Leftrightarrow \varphi \, (g) \, \varphi \, \Big((g')^{-1} \Big) = 1_H \text{ since } \varphi \, : \, G \mapsto H \text{ is a homomorphism}$$

$$\Leftrightarrow \varphi \, (g) \, \big[\varphi \, (g') \big]^{-1} = 1_H \quad \text{since } \varphi \, : \, G \mapsto H \text{ is a homom orphism}$$

$$\Leftrightarrow \varphi \, (g) = 1_H \varphi \, (g') \qquad \text{multiplying on right by } \varphi \, (g')$$

$$\Leftrightarrow \varphi \, (g) = \varphi \, (g') \, .$$

Next, we show that the mapping $\psi: G/\mathrm{Ker} \varphi \mapsto H$ is a homomorphism. Pick $g, g' \in G$. We have that

$$\psi$$
 ([(Ker φ) g] [(Ker φ) g']) = ψ ((Ker φ) gg')
= φ (gg')
= φ (g) φ (g')
since φ : $G \mapsto H$ is a homomorphism
= ψ ((Ker φ) g) ψ ((Ker φ) g').

Furthermore, we have that

$$\begin{array}{rcl} \psi \left(\left[\left(\operatorname{Ker} \, \varphi \right) g \right]^{-1} \right) & = & \psi \left(\left(\operatorname{Ker} \, \varphi \right) g^{-1} \right) \\ & = & \varphi \left(g^{-1} \right) \\ & = & \left[\varphi \left(g \right) \right]^{-1} \\ & & \operatorname{since} \, \varphi \, : \, G \mapsto H \text{ is a homomorphism} \\ & = & \left[\psi \left(\left(\operatorname{Ker} \, \varphi \right) g \right) \right]^{-1}, \end{array}$$

and

$$\begin{array}{rcl} \psi\left(1_{G/\operatorname{Ker}\,\varphi}\right) & = & \psi\left(\left(\operatorname{Ker}\,\varphi\right)1_{G}\right) \\ & = & \varphi\left(1_{G}\right) \\ & = & 1_{H} & \text{since }\varphi\,:\,G\mapsto H \text{ is a homomorphism.} \end{array}$$

It remains to show that the mapping $\psi : G/\text{Ker } \varphi \mapsto H$ is injective. From above,

$$\varphi(g) = \varphi(g') \Rightarrow (\text{Ker } \varphi) g = (\text{Ker } \varphi) g'$$

and hence $\psi : G/\text{Ker } \varphi \mapsto H$ is injective.