From Remark 8.9, we have that for $g \in G$,

$$Ng = N1_G \Leftrightarrow g1_G^{-1} \in N \Leftrightarrow g \in N.$$

Hence Ker $\chi = N$.

Remark 8.13. The quotient homomorphism

$$\chi: G \mapsto G/N$$

is surjective.

Example 8.14 (Example 3.14 revisited). Consider the subgroup

 $4\mathbb{Z} = \{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$ of the group \mathbb{Z} of integers under addition. This subgroup is normal, since \mathbb{Z} is an Abelian group under addition. The elements of $\mathbb{Z}/4\mathbb{Z}$ are the right cosets of $4\mathbb{Z}$ in \mathbb{Z} :

$$4\mathbb{Z} + 0 = \{\dots, -12, -8, -4, 0, 4, 8, 12, \dots\},\$$

 $4\mathbb{Z} + 1 = \{\dots, -11, -7, -3, 1, 5, 9, 13, \dots\},\$
 $4\mathbb{Z} + 2 = \{\dots, -10, -6, -2, 2, 6, 10, 14, \dots\},\$
 $4\mathbb{Z} + 3 = \{\dots, -9, -5, -1, 3, 7, 11, 15, \dots\}.$

These cosets partition \mathbb{Z} .

The group operations of addition, negation and zero on $\mathbb{Z}/4\mathbb{Z}$ are given by, respectively,

$$(k + 4\mathbb{Z}) + (k' + 4\mathbb{Z}) = (k + k') + 4\mathbb{Z},$$

 $-(k + 4\mathbb{Z}) = (-k) + 4\mathbb{Z},$
 $0 + 4\mathbb{Z} = 1_{\mathbb{Z}/4\mathbb{Z}}.$

Proposition 8.15. Let G and H be groups, and $\varphi: G \mapsto H$ be a homomorphism. Then φ may be factorized uniquely through the quotient homomorphism from G to the quotient group $G/\operatorname{Ker} \varphi$ of G by the normal subgroup $\operatorname{Ker} \varphi$.

Furthermore, the mapping

$$\psi : G/Ker \varphi \mapsto H$$

 $(Ker \varphi) g \mapsto \varphi (g).$

is an injective homomorphism.

Proof First of all, we need to show that the mapping $\psi : G/\text{Ker } \varphi \mapsto H$ is well-defined, i.e. that if $g, g' \in G$ satisfy

$$(\text{Ker }\varphi) g = (\text{Ker }\varphi) g'$$