Finally, we verify the identity axiom. Pick $g \in G$. We have that

$$(Ng) 1_{G/N} = (Ng) (N1_G) = Ng1_G = Ng,$$

 $1_{G/N} (Ng) = (N1_G) (Ng) = N1_G g = Ng.$

Definition 8.8. Let G be a group and N be a normal subgroup of G. The group G/N of the right cosets of N in G is called the *quotient group*.

Remark 8.9. In G/N, we have that

$$Nq = Nh \Leftrightarrow qh^{-1} \in N$$
.

Remark 8.10. The order of the group G/N is the number of right cosets of N in G. Hence, from Corollary 3.17,

$$o(G/N) = \frac{o(G)}{o(N)}$$
.

Definition 8.11. Let G be a group and N be a normal subgroup of G. The quotient homomorphism

$$\chi: G \mapsto G/N$$

from G to the quotient group G/N is the map which assigns to each $g \in G$ its right coset $Ng \in G/N$:

$$\chi(g) = Ng \in G/N \quad \forall g \in G.$$

Proposition 8.12. Let G be a group and N be a normal subgroup of G. The quotient homomorphism $\chi : G \mapsto G/N$ is indeed a homomorphism with kernel N.

Proof That $\chi : G \mapsto G/N$ is a homomorphism is a consequence of the way we define the operations on G/N.

Indeed, pick $g, g' \in G$. Then we have that

$$\chi(gg') = Ngg' = (Ng)(Ng') = \chi(g)\chi(g').$$

Further, we have that

$$\chi(g^{-1}) = Ng^{-1} = (Ng)^{-1} = [\chi(g)]^{-1}$$

and

$$\chi(1_G) = N1_G = 1_{G/N}$$
.

Finally, we wish to show that the kernel of χ is N.

Indeed, by definition

$$\text{Ker } \chi = \{g \in G : \chi(g) = 1_{G/N}\} = \{g \in G : Ng = N1_G\}.$$