Definition 7.16. For any subgroup H of a group G, by the inclusion homomorphism is meant the mapping

$$i: H \mapsto G$$

which assigns ro each $h \in H$ the element $h \in G$.

Remark 7.17. The inclusion homomorphism of a subgroup H of a group G is indeed a homomorphism. Moreover, it is an injective homomorphism.

Proposition 7.18. Let G and H be groups, and $\varphi : G \mapsto H$ be a homomorphism. Then φ may be factorized through the inclusion of the subgroup $\text{Im}\varphi$ in the group H by a homomorphism

$$\psi : G \mapsto \operatorname{Im} \varphi$$

which is surjective.

Proof Define $\psi : G \mapsto \text{Im} \varphi$ by

$$\psi(g) = \varphi(g) \quad \forall g \in G.$$

Then, since φ is a homomorphism, ψ is a homomorphism. Moreover, ψ is clearly surjective. Clearly

$$\varphi = i \circ \psi$$
,

where $i : \text{Im}\varphi \mapsto H$ is the inclusion homomorphism defined above.

Remark 7.19. We call $\psi : G \mapsto \text{Im}\varphi$ the canonical homomorphism associated with $\varphi : G \mapsto H$. As we have just seen, it is surjective by construction.

Corollary 7.20. Let G and H be groups, and $\varphi : G \mapsto H$ be a homomorphism. Then the following assertions are equivalent:

- (a) φ : G → H is injective;
- (b) the canonical homomorphism ψ : G → Imφ is an isomorphism.

Proof (a) \Rightarrow (b) Suppose that (a) holds, i.e. that $\varphi : G \mapsto H$ is injective.

Then the canonical homomorphism $\psi : G \mapsto \text{Im}\varphi$ is also injective. Furthermore, it is surjective by Remark 7.19. Hence it is bijective.

It follows from Proposition 7.9 that $\psi : G \mapsto \text{Im}\varphi$ is an isomorphism.

(b) \Rightarrow (a) Suppose that (b) holds, i.e. that the canonical homomorphism $\psi : G \mapsto \text{Im}\varphi$ is an isomorphism.

It follows from Proposition 7.9 that $\psi : G \mapsto \text{Im}\varphi$ is bijective, and hence it is injective. Hence $\varphi : G \mapsto H$ is injective.