Pick $h \in \text{Im}(\varphi)$. To show that $\text{Im}(\varphi)$ satisfies the inverse axiom, we must show that $h^{-1} \in \text{Im}(\varphi)$.

By the definition of $\operatorname{Im}(\varphi)$, there exists $g \in G$ such that

$$h = \varphi(g)$$
.

Since $\varphi: G \mapsto H$ is a homomorphism, it preserves the group operation of inverse. Hence

$$h^{-1} = \left[\varphi\left(g\right)\right]^{-1} = \varphi\left(g^{-1}\right),$$

giving that $h^{-1} \in \text{Im}(\varphi)$ as required.

Hence $\operatorname{Im}(\varphi)$ is a subgroup of H.

Definition 7.13. Let G and H be groups and

$$\varphi : G \mapsto H$$

be a homomorphism. By the kernel of φ is meant the subset

$$Ker \varphi = \{g \in G : \varphi(g) = 1_H\}.$$

of the group G.

Proposition 7.14. Let G and H be groups and $\varphi : G \mapsto H$ be a homomorphism. Then the kernel of φ , $Ker \varphi$, is a subgroup of G. Moreover, the following assertions are equivalent:

- (a) φ : G → H is injective;
- (b) the kernel of φ, Ker φ, is the trivial subgroup {1_G} of G.

Proof By Proposition 3.2, to show that $Ker(\varphi)$ is a subgroup of G it is sufficient to show that it satisfies the closure and inverse axioms with respect to the product operation of G.

To show that it satisfies the closure axiom, suppose that $g_1, g_2 \in \text{Ker } \varphi$:

$$\varphi(q_1) = \varphi(q_2) = 1_H$$
.

We need to show that $g_1g_2 \in \text{Ker } \varphi$.

Indeed, since $\varphi : G \mapsto H$ is a homomorphism,

$$\varphi (g_1g_2) = \varphi (g_1) \varphi (g_2) = 1_H \cdot 1_H = 1_H.$$

To show that Ker φ satisfies the inverse axiom, suppose that $g \in \text{Ker } \varphi$:

$$\varphi (g) = 1_H$$
.

We need to show that $g^{-1} \in \text{Ker } \varphi$.