To show that ψ is a homomorphism, by Remarks 7.2 (3) it is sufficient to show that it preserves the group operation of product.

Pick $m, m' \in \mathbb{Z}_n$. Then, since $m +_n m' = m + m' - kn$ for some non-negative integer k,

$$\begin{split} \psi\left(\omega^{m}\omega^{m'}\right) &= \psi\left(\omega^{m+m'}\right) = \psi\left(\omega^{m+nm'+kn}\right) = \psi\left(\omega^{m+nm'}\omega^{kn}\right) \\ &= \psi\left(\omega^{m+nm'}\left(\omega^{n}\right)^{k}\right) = \psi\left(\omega^{m+nm'}\cdot 1^{k}\right) = \psi\left(\omega^{m+nm'}\right) = m +_{n} m' \\ &= \psi\left(\omega^{m}\right) +_{n} \psi\left(\omega^{m'}\right), \end{split}$$

where the first, third and fourth equalities follow from the properties of powers.

Remark 7.4. Let G be a group. Then the identity mapping

$$i_G: G \mapsto G$$

 $g \mapsto i_G(g) = g$

is a homomorphism. It is called the identity homomorphism.

Proposition 7.5. If G, H and K are groups and

$$\varphi: G \mapsto H$$
 and $\psi: H \mapsto K$

are homomorphisms, then the composite mapping

$$\psi \circ \varphi : G \mapsto K$$

 $g \mapsto (\psi \circ \varphi)(g) = \psi(\varphi(g))$

is a homomorphism.

Proof This is left as an exercise.

Definition 7.6. An isomorphism

$$\varphi : G \mapsto H$$

from a group G to a group H is a homomorphism from G to H for which there exists a homomorphism

$$\psi : H \mapsto G$$

such that

$$\psi \circ \varphi = i_G$$
 and $\varphi \circ \psi = i_H$,

where i_G and i_H are the identity isomorphisms of the groups G and H respectively (i.e.

$$\psi(\varphi(g)) = g \quad \forall g \in G \quad \text{and} \quad \varphi(\psi(h)) = h \quad \forall h \in H.$$

If φ is an isomorphism, then ψ is called the inverse homomorphism of φ .