(3) Let n be a positive integer and take

$$\omega = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right),$$

the primitive n^{th} root of unity. Take \mathbb{Z} to be the group of integers under addition, and C_n to be the group of the n^{th} roots of unity under complex multiplication. Consider the mapping

$$\varphi : \mathbb{Z} \mapsto C_n$$

 $m \mapsto \varphi(m) = \omega^m$

To show that φ is a homomorphism, by Remarks 7.2 (3) it is sufficient to show that it preserves the group operation of product.

Pick $m, m' \in \mathbb{Z}$. Then

$$\varphi(m + m') = \omega^{m+m'} = \omega^m \omega^{m'} = \varphi(m) \varphi(m')$$
,

where the second equality follows from the properties of powers.

(4) Let n be a positive integer and take

$$\omega = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right),\,$$

the primitive n^{th} root of unity. Take $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ to be the group of integers mod n under addition mod n, and C_n to be the group of the n^{th} roots of unity under complex multiplication. Consider the mapping

$$\varphi : \mathbb{Z}_n \mapsto C_n$$

 $m \mapsto \varphi(m) = \omega^m$.

To show that φ is a homomorphism, by Remarks 7.2 (3) it is sufficient to show that it preserves the group operation of product.

Pick $m, m' \in \mathbb{Z}_n$. Then, since $m +_n m' = m + m' - kn$ for some non-negative integer k,

$$\varphi\left(m +_{n} m'\right) = \omega^{m +_{n} m'} = \omega^{m + m' - kn} = \omega^{m} \omega^{m'} \omega^{-kn} = \omega^{m} \omega^{m'} \left(\omega^{n}\right)^{-k} = \omega^{m} \omega^{m'} 1^{-k}$$
$$= \omega^{m} \omega^{m'} = \varphi\left(m\right) \varphi\left(m'\right),$$

where the third and fourth equalities follow from the properties of powers.

Consider now the inverse mapping ψ of φ :

$$\psi : C_n \mapsto \mathbb{Z}_n$$

 $\omega^m \mapsto \psi(\omega^m) = m \text{ for } m \in \mathbb{Z}_n.$