We have that

Proposition 6.3. Let G be a group of invertible mappings from a set X to itself, and take $Y \subset X$. The set of mappings in G under which Y is invariant is indeed a subgroup of G under the operation of composition of mappings.

Proof This is an exercise.

Example 6.4. Take $X = \{1, 2, 3, 4\}$. Then $S(X) = S_4$. Consider the subgroup

$$G = \{i, (12)(34), (13)(24), (14)(23)\}$$

of S(X). Then

- the subgroup of G under which the subset Y = {1, 2} of X is invariant is {i, (12) (34)};
- the subgroup of G under which the subset Y = {1, 3} of X is invariant is {i, (13) (24)};
- the subgroup of G under which the subset Y = {1, 2, 3} of X is invariant is {i};
- the subgroup of G under which the subset Y = {1, 2, 3, 4} of X is invariant is G itself.

Example 6.5. Consider the set \mathbb{R}^2 and take G to be the subgroup of $S(\mathbb{R}^2)$ consisting of all the *isometries* of \mathbb{R}^2 , i.e. consisting of all the invertible mappings

$$\psi : \mathbb{R}^2 \mapsto \mathbb{R}^2$$

which leave distance unchanged.

Now consider the subset Y of \mathbb{R}^2 given by the equilateral triangle in the complex plane centered at the origin with vertices in the positions corresponding to the cube roots of unity:

The group of isometries under which this triangle is invariant is denoted by D_3 .

Examples 6.6. 1. Consider again the equilateral triangle in the complex plane centered at the origin with vertices in the positions corresponding to the cube roots of unity.