The composite $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$ of the permutations $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$ is defined to be the mapping resulting from performing the first mapping then the second one:

$$1 \mapsto 4 \mapsto 5$$
, $2 \mapsto 3 \mapsto 1$, $3 \mapsto 5 \mapsto 3$, $4 \mapsto 1 \mapsto 2$, $5 \mapsto 2 \mapsto 4$

i.e.

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{array}\right) \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{array}\right) = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 & 4 \end{array}\right).$$

The identity permutation is taken to be the identity mapping $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$.

Proposition 5.4. Let n be a positive integer. The permutations of degree n form a group S_n of order n!.

Proof The closure axiom is satisfied since the composition

$$\sigma\tilde{\sigma}: \{1, 2, ..., n\} \mapsto \{1, 2, ..., n\}$$

of two permutations σ , $\tilde{\sigma} \in S_n$ (i.e. invertible mappings from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, n\}$) is indeed a permutation.

The associativity axiom is satisfied because the composition of mappings is associative.

The identity axiom is satisfied by the permutation $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$ of degree n.

For a permutation $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1\sigma & 2\sigma & 3\sigma & \cdots & n\sigma \end{pmatrix}$ of degree n, $\begin{pmatrix} 1\sigma & 2\sigma & 3\sigma & \cdots & n\sigma \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$ is permutation of degree n, which satisfies the inverse n. a permutation of degree n which satisfies the inverse axiom.

Hence S_n is a group. By Example 1.6, it has n! elements

Given any permutation σ of degree n given by

$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1\sigma & 2\sigma & \dots & n\sigma \end{pmatrix}$$
,

we may look at the effect of repeatedly applying the permutation to any particular $i \in$ $\{1, 2, \ldots, n\}$:

$$i \mapsto i\sigma \mapsto i\sigma^2 \mapsto i\sigma^3 \mapsto \dots$$

Since the set $\{1, 2, ..., n\}$ is finite, there must come a point when i is mapped back to itself. So there must exist $k \in \mathbb{N}$ with $i\sigma^k = i$.