For example, if n = 3 and $\sigma = (1 \ 3 \ 2)$, then

$$f_{\sigma}(x_1, x_2, x_3) = (x_{1\sigma} - x_{2\sigma}) (x_{1\sigma} - x_{3\sigma}) (x_{2\sigma} - x_{3\sigma})$$

 $= (x_3 - x_1) (x_3 - x_2) (x_1 - x_2)$
 $= (x_1 - x_3) (x_2 - x_3) (x_1 - x_2)$
 $= f(x_1, x_2, x_3)$.

Note that $f_{\sigma}(x_1, x_2, ..., x_n)$ contains the same number of bracketed terms as $f(x_1, x_2, ..., x_n)$. Each term in f_{σ} is either identical to one of the terms in f (if $i\sigma < j\sigma$) or to minus one of the terms in f (if $i\sigma > j\sigma$). Hence

$$f_{\sigma}(x_1, x_2, ..., x_n) = \pm f(x_1, x_2, ..., x_n).$$

We claim that

$$f_{\sigma}(x_1, x_2, ..., x_n) = (-1)^{\sigma} f(x_1, x_2, ..., x_n).$$

Indeed, suppose that σ is expressed as a product

$$\sigma = \tau_1 \tau_2 \dots \tau_k$$

of transpositions $\tau_1, \tau_2, \dots, \tau_k$. Each transposition τ_i negates f:

$$f_{\tau_i}(x_1, x_2, ..., x_n) = -f(x_1, x_2, ..., x_n) \quad \forall i = 1, 2, ..., k.$$

For example, if n = 3 and $\tau = (2 3)$, then

$$f_{\tau}(x_1, x_2, x_3) = (x_1 - x_3) (x_1 - x_2) (x_3 - x_2)$$

$$= -(x_1 - x_3) (x_1 - x_2) (x_2 - x_3)$$

$$= -f(x_1, x_2, x_3).$$

It follows that

$$f_{\sigma}(x_1, x_2, ..., x_n) = (\cdots (f_{\tau_1})_{\tau_2} \cdots)_{\tau_k} (x_1, x_2, ..., x_n)$$

= $(-1)^k f(x_1, x_2, ..., x_n)$.

In particular, it follows from the second equality that any expression of σ as a product of transpositions either always contains an even number of terms or always contains an odd number of terms.

Indeed, suppose that this is not the case, i.e. that σ can be expressed as a product of k transpositions and as a product of k' transpositions, with k even and k' odd. Then

$$f_{\sigma}(x_1, x_2, ..., x_n) = (-1)^k f(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n),$$