Example 5.16. Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 1 & 3 & 2 & 6 \end{pmatrix}$$
(5.2)

of degree 6, which has disjoint cycle representation

$$\sigma = (1 \ 4 \ 3) (2 \ 5) (6) = (1 \ 4 \ 3) (2 \ 5)$$
 (the (6) is usually omitted).

The order of σ is the lowest common multiple of 3 and 2, i.e. 6.

Definition 5.17. A transposition of degree n, τ , is a permutation of the form $(i \ j)$ for $i, j \in \{1, 2, ..., n\}$ with $i \neq j$.

Remarks 5.18. (1) A transposition of degree n is exactly a 2-cycle, i.e. it is a permutation of degree n which interchanges 2 elements of {1, 2, ..., n} and leaves all other elements unaltered.

(2) Any transposition has order 2 and thus is its own inverse.

Proposition 5.19. Any permutation σ may be expressed, in no way uniquely, as a product

$$\sigma = \tau_1 \tau_2 \dots \tau_k$$

of a finite number k of transpositions $\tau_1, \tau_2, \dots, \tau_k$.

Proof Since, by Proposition 5.12, any permutation may be expressed as a product of disjoint cycles, it suffices to show that any cycle may be expressed (non necessarily uniquely) as a product of transpositions.

Indeed, suppose that σ is a cycle of length k:

$$\sigma = (i_1 \ i_2 \ i_3 \ i_4 \ \dots \ i_k).$$

We take

$$\tilde{\sigma} = (i_1 \ i_2) (i_1 \ i_3) (i_1 \ i_4) \dots (i_1 \ i_k)$$

and claim that $\sigma = \tilde{\sigma}$.

Indeed, consider $\tilde{\sigma}$. Then $i_1 \mapsto i_2$ under the first transposition, then i_2 is left unchanged because it does not appear in any of the remaining k-2 transpositions.

Further, $i_2 \mapsto i_1$ under the first transposition, then $i_1 \mapsto i_3$ under the second transposition, then i_3 is left unchanged by the remaining k-3 transpositions. So $i_2 \mapsto i_3$.

Similarly, i_3 is left unchanged by the first transposition, then $i_3 \mapsto i_1$ under the second transposition, then $i_1 \mapsto i_4$ under the third transposition, then i_4 is left unchanged by the remaining k-4 transpositions. So $i_3 \mapsto i_4$.