Remark 5.8. Given a cycle, we may easily compute its powers:

$$\sigma = (1\ 5\ 3) \Longrightarrow \quad \sigma^2 = (1\ 3)\ (2\ 5)\ .$$

Similarly,

$$\sigma^3 = (1\ 2\ 3\ 5), \qquad \sigma^4 = (1)(2)(3)(5).$$

Hence σ has order 4.

Furthermore, it is easy to see that the order of any cycle is equal to its length.

Definition 5.9. A cycle of length k (i.e. one containing k elements $i_1, i_2, ..., i_k$) is called a k-cycle.

Remark 5.10. The inverse of any k-cycle is itself a k-cycle:

$$(i_1 \ i_2 \ \dots \ i_{k-1} \ i_k)^{-1} = (i_k \ i_{k-1} \ \dots \ i_2 \ i_1).$$

Example 5.11. The inverse of the 4-cycle $\sigma = (1\ 5\ 3\ 2)$ is the 4-cycle $\sigma^{-1} = (2\ 3\ 5\ 1) = (1\ 2\ 3\ 5)$.

Proposition 5.12. Let n be a positive integer. Any permutation σ of degree n can be expressed as a product of disjoint cycles. For any two such expressions, the ordering of the disjoint cycles may be different, but the partitioning of the set $\{1, 2, ..., n\}$ amongst the cycles and the cyclic ordering of the pairs of cycles containing the same elements are the same.

Proof Let n be a positive integer and σ be a permutation of degree n.

Pick any element $i \in \{1, 2, ..., n\}$, and let k be the least positive integer such that $i\sigma^k = i$. Note the cycle

$$(i \ i\sigma \ i\sigma^2 \ \dots \ i\sigma^{k-1})$$
.

If k < n, we pick an element $i' \in \{1, 2, ..., n\}$ which is not in this cycle, let k' be the least positive integer such that $i'\sigma^{k'} = i'$, and note the cycle

$$(i' i'\sigma i'\sigma^2 \dots i'\sigma^{k'-1}),$$

which is disjoint from $(i \ i\sigma \ i\sigma^2 \dots i\sigma^{k-1})$.

If k + k' < n, we pick element $i'' \in \{1, 2, ..., n\}$ which is not in either of the above cycles, let k'' be the least positive integer such that $i''\sigma^{k''} = i''$, and note the cycle

$$\left(i''\ i''\sigma\ i''\sigma^2\ \dots\ i''\sigma^{k''-1}\right)$$
,

which is disjoint from $(i \ i\sigma \ i\sigma^2 \ \dots \ i\sigma^{k-1})$ and $(i' \ i'\sigma \ i'\sigma^2 \ \dots \ i'\sigma^{k'-1})$.

We continue until every element of $\{1, 2, ..., n\}$ is contained in one cycle. Then σ is the product of these mutually disjoint cycles since each element of $i \in \{1, 2, ..., n\}$ is affected by exactly one cycle.