Example 5.5. Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$
(5.1)

of degree 5. Its repeated action on each element of the set {1, 2, 3, 4, 5} is:

$$1 \xrightarrow{\sigma} 4 \xrightarrow{\sigma} 5 \xrightarrow{\sigma} 1,$$

$$2 \xrightarrow{\sigma} 3 \xrightarrow{\sigma} 2,$$

$$3 \xrightarrow{\sigma} 2 \xrightarrow{\sigma} 3,$$

$$4 \xrightarrow{\sigma} 5 \xrightarrow{\sigma} 1 \xrightarrow{\sigma} 4,$$

$$5 \xrightarrow{\sigma} 1 \xrightarrow{\sigma} 4 \xrightarrow{\sigma} 5.$$

It can be seen that the permutation σ can in fact be completely described by the following two cycles:

$$1 \rightarrow 4 \rightarrow 5 \rightarrow 1$$
, $2 \leftrightarrow 3$.

These cycles represent the 'orbits' of the action of σ on the elements of the set $\{1, 2, 3, 4, 5\}$.

Definition 5.6. Let n be a positive integer. A cycle is a permutation of degree n which may be written in the form

$$(i_1 \ i_2 \ \dots \ i_k)$$
,

where $i_1, i_2, ..., i_k$ are distinct elements of $\{1, 2, ..., n\}$ (i.e. $k \le n$). By $(i_1 i_2 ... i_k)$, we mean the permutation which maps

$$i_1 \mapsto i_2, \qquad i_2 \mapsto i_3, \qquad \dots \qquad i_{k-1} \mapsto i_k, \qquad i_k \mapsto i_1$$

and leaves every other element of $\{1, 2, ..., n\}$ unchanged.

Example 5.7. (1) Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}.$$

of degree 5. Then σ is the cycle (1 5 3 2). Note that this cycle may also be written as (5 3 2 1), (3 2 1 5) or (2 1 5 3).

- (2) The permutation σ of degree 5 in (5.1) is (1 4 5) (2 3), or (2 3) (1 4 5), or (1 4 5) (3 2), etc.
- (3) The cycle (1 2 3 5) is the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$$
.

of degree 5.