To prove the second of claim, consider two cosets Ha and Hb which are not disjoint. We need to show that Ha = Hb.

Suppose that $c \in Ha \cap Hb$. Then $c \sim_H a$ and $c \sim_H b$. By symmetry, the first equivalence gives that $a \sim_H c$. Using the second equivalence and transitivity gives that $a \sim_H b$. Using symmetry gives that $b \sim_H a$.

If $d \in Ha$, then $d \approx a$. Since $a \approx b$, transitivity gives that $d \approx b$, i.e. that $d \in Hb$. So $Ha \subseteq Hb$.

If $d \in Hb$, then $d \sim_H b$. Since $b \sim_H a$, transitivity gives that $d \sim_H a$, i.e. that $d \in Ha$. So $Hb \subseteq Ha$.

Hence Ha = Hb.

Remark 3.13. Proposition 3.12 gives a more efficient way of finding the right cosets of a subgroup H of a group G:

- write down the right coset H1 = H.
- while there exists an element of G which does not lie in any right coset that has been found so far, pick such an element b∈ G and write down the coset Hb (this contains b from the proof of Proposition 3.12).

Example 3.14. Consider the subgroup $4\mathbb{Z} = \{..., -12, -8, -4, 0, 4, 8, 12, ...\}$ of the group \mathbb{Z} of integers under addition. Using the algorithm in Remark 3.13 gives the right cosets of $4\mathbb{Z}$ in \mathbb{Z} :

$$\begin{split} &4\mathbb{Z}+0=\left\{\ldots,\,-12,\,-8,\,-4,\,0,\,4,\,8,\,12,\,\ldots\right\},\\ &4\mathbb{Z}+1=\left\{\ldots,\,-11,\,-7,\,-3,\,1,\,5,\,9,\,13,\,\ldots\right\},\\ &4\mathbb{Z}+2=\left\{\ldots,\,-10,\,-6,\,-2,\,2,\,6,\,10,\,14,\,\ldots\right\},\\ &4\mathbb{Z}+3=\left\{\ldots,\,-9,\,-5,\,-1,\,3,\,7,\,11,\,15,\,\ldots\right\}. \end{split}$$

The procedure is complete since every element of \mathbb{Z} lies in one of the above four cosets. These cosets give the partition.

Lemma 3.15. Let G be a group and H be a subgroup of G. For $a, b \in G$, Ha = Hb if, and only if, $a \underset{H}{\sim} b$ (i.e. $ab^{-1} \in H$).

Proof The ← implication was show in the proof of Proposition 3.12.

To show that the \Rightarrow implication is true, pick $a, b \in G$ such that Ha = Hb.

From the proof of Proposition 3.12, $a \in Ha$. Hence $a \in Hb$, i.e. $a \sim b$.

Lemma 3.16. For any subgroup H of order o(H) of a finite group G, each right coset of H contains o(H) elements.