It remains to show that the equivalence class of each $a \in G$ under the equivalence relation $\underset{H}{\sim}$ is the right coset Ha, i.e. that

$$\left\{b \in G : b \underset{H}{\sim} a\right\} = Ha \quad \forall a \in G.$$
 (3.2)

Indeed, pick $a \in G$. We show firstly that $\left\{b \in G : b \underset{H}{\sim} a\right\} \subseteq Ha$ and then that $Ha \subseteq \left\{b \in G : b \underset{H}{\sim} a\right\}$.

To prove the first inclusion, pick $b \in G$ such that $b \sim_H a$ (such an element exists since $a \sim_H a$). Then $ba^{-1} \in H$. Hence $(ba^{-1}) a \in Ha$.

Using the associativity, inverse and identity axioms of G gives that

$$(ba^{-1}) a = b (a^{-1}a) = b1_G = b.$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
by associativity by inverse by identity
axiom of G axiom of G axiom of G

So $b \in Ha$, proving the first inclusion.

To prove the second inclusion, suppose that $b \in Ha$. Then there exists $h \in H$ such that b = ha. So $ba^{-1} = (ha) a^{-1}$. Using the associativity, inverse and identity axioms of G gives that

$$\begin{array}{cccc} \left(ha\right)a^{-1} &=& h\left(aa^{-1}\right) &=& h1_G &=& h. \\ & \uparrow & & \uparrow & \uparrow \\ & \text{by associativity} & \text{by inverse} & \text{by identity} \\ & \text{axiom of } G & \text{axiom of } G & \text{axiom of } G \end{array}$$

So
$$ba^{-1} = h \in H$$
, i.e. $b \underset{H}{\sim} a$.

We are now in a position to show the following.

Proposition 3.12. The right cosets of a subgroup H of a group G provide a partition of G
(i.e. they divide G into mutually disjoint subsets).

Proof Let G be a group and H be a subgroup of G.

We need to show that each element of G is contained in (at least) one right coset of the subgroup H of G, and that any two cosets of the subgroup H of G are either equal or disjoint.

To prove the first of these claims, pick $a \in G$. Since $a \underset{H}{\sim} a$, the characterization (3.2) of the right coset Ha gives that

$$a \in \left\{b \in G : b \underset{H}{\sim} a\right\} = Ha.$$