Proposition 3.6. A subset H of a group G is a subgroup of G if, and only if, all $a, b \in H$.

94/17

Proof The ⇒ implication is true by the definition of a subgroup.

To show that the
implication is true,

Choose b = a. Then $aa^{-1} = e \in H$ i.e. H contains the identity.

Choose a = e. Then $eb^{-1} = b^{-1} \in H$ i.e. H contains inverses.

Choose $b = b^{-1}$. Then $a(b^{-1})^{-1} = ab \in H$ i.e. H is closed.

Associativity follows since H is a subset of G.

Definition 3.7. The right cosets of a subgroup H of a group G are the subsets of G of the form

$$Ha = \{ha \in G : h \in H\}$$

for any $a \in G$.

Remark 3.8. To compute the right cosets of a subgroup H of a group G, we choose $a \in G$ to be each of the elements of G in turn and find the corresponding right coset Ha. We will see later on that these right cosets provide a partition of G (i.e. they divide G into mutually disjoint subsets), and hence can be found more efficiently.

Example 3.9. Consider the set $G = \{1, a, b, c, d, e\}$ with product table (3.1) in Example 3.5.

The right cosets of the subgroup $H = \{1, a, b\}$ of G are

$$H1 = \{1, a, b\} 1 = \{1, a, b\},\$$

$$Ha = \{1, a, b\} a = \{a, b, 1\},\$$

$$Hb = \{1, a, b\} b = \{b, 1, a\},\$$

$$Hc = \{1, a, b\} c = \{c, e, d\},\$$

$$Hd = \{1, a, b\} d = \{d, c, e\},\$$

$$He = \{1, a, b\} e = \{e, d, c\}.$$

Hence the right cosets of the subgroup $H = \{1, a, b\}$ of the group $G = \{1, a, b, c, d, e\}$ are $\{1, a, b\}$ and $\{c, d, e\}$, giving the partition of G.

Definition 3.10. An equivalence relation on a set G is a relation \sim between pairs of elements of G satisfying

(i)
$$\forall a \in G, a \sim a$$
 (reflexivity),

(ii)
$$\forall a, b \in G, a \sim b \Rightarrow b \sim a$$
 (symmetry),

(iii)
$$\forall a, b, c \in G, a \sim b, b \sim c \Rightarrow a \sim c$$
 (transitivity).

The equivalence class of $a \in G$ is defined to be $\{b \in G : b \sim a\}$.