is Abelian. This group is known as the Klein 4-group. The Klein 4-group and C_4 , which is also Abelian, are the only two distinct (i.e. non-isomorphic) groups.

Example 2.5. For any positive integer $n \ge 2$, the set

$$\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$$

of integers mod n with operations of product, inverse and identity given by addition mod n ($a +_n b$, defined to be the remainder obtained when dividing the sum a + b by n), negation mod n ($a^{-1} = n - a$, we denote a^{-1} by -a) and the number 0 respectively is Abelian.

Example 2.6. n = 6

Consider $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. For example, we have that 4 + 5 = 9. Dividing 9 by 6 and taking the remainder gives 3. Hence $4 +_6 5 = 3$. It can be seen that \mathbb{Z}_6 has product table

	0	1	2	3	4	5 0 1 · 2 3 4
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1 .
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Since $1 +_6 5 = 2 +_6 4 = 3 +_6 3 = 0$, we have that

$$-1 = 5$$
, $-2 = 4$, $-3 = 3$, $-4 = 2$, $-5 = 1$.