(4) Let n be a positive integer. The set S_n of permutations of {1, 2, ..., n} together with operations of product, inverse and identity given by multiplication of permutations, inversion of permutations and the identity permutation respectively is a set. In fact, S_n is the group of permutations of degree n.

Example (n = 4) Consider the permutations $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

We take $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ to be the result of applying the first permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ and then the second one $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

Since

$$1 \mapsto 4 \mapsto 3$$
, $2 \mapsto 1 \mapsto 2$, $3 \mapsto 2 \mapsto 1$, $4 \mapsto 3 \mapsto 4$.

we have that

$$\left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right).$$

Note also

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{array}\right) \left(\begin{array}{ccccccc} 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 4 \end{array}\right) = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right).$$

We define the identity permutation to be $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$.

We define the inverse of a permutation to be the permutation obtained by swapping the rows of that permutation, i.e.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 1 & 4 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}.$$

Definition 1.5. A group G is said to be *finite* if it has only finitely many elements. In this case, the $order\ o\ (G)$ of G is defined to be the number of elements in G. Otherwise, G is said to be infinite.

Examples 1.6. (1) For each positive integer n, the groups C_n and S_n introduced in Example 1.4 are finite. The orders of these groups are given by

$$o(C_n) = n$$
, $o(S_n) = n!$.