Chapter 1

Group Axioms and Examples

Definition 1.1. A set G is a group if it satisfies the following four axioms:

- (i) \exists a binary operation $G \times G \mapsto G$ (closure), $(a, b) \mapsto ab$
- (ii) $a(bc) = (ab) c \forall a, b, c \in G$ (associativity),
- (iii) $\exists 1 \in G \text{ s.t. } a1 = a = 1a \ \forall a \in G$ (identity),
- (iv) $\forall a \in G, \exists a^{-1} \in G \text{ s.t. } aa^{-1} = 1 = a^{-1}a \text{ (inverse)}.$

Remark 1.2. Written additively, the above four axioms become

- (i) \exists a binary operation $G \times G \mapsto G$ (closure), $(a, b) \mapsto a + b$
- (ii) $a + (b + c) = (a + b) + c \forall a, b, c \in G$ (associativity),
- (iii) $\exists 0 \in G \text{ s.t. } a + 0 = a = 0 + a \ \forall a \in G$ (identity),
- (iv) $\forall a \in G, \exists -a \in G \text{ s.t. } a + (-a) = 0 = (-a) + a \text{ (inverse)}.$

Remarks 1.3. To define a group G, it is necessary to

- give the set of elements in G;
- find a binary operation which assigns to each pair (a, b) ∈ G its product ab ∈ G;
- assign an element a⁻¹ ∈ G, called the inverse of a, to each element in a ∈ G;
- select an element 1 ∈ G, called the identity of G;
- verify that the associativity, inverse and identity axioms above hold.