It is worth noting that the previous proof also allows us to locate the inverses of a regular element.

Lemma 8.11. If $a \in S$ is regular, and $x \in V(a)$, then there exist idempotents e = ax and f = xa such that

$$a \mathcal{R} e \mathcal{L} x$$
, $a \mathcal{L} f \mathcal{R} x$.

Conversely, if $a \in S$ and e, f are idempotents such that

then there exists $x \in V(a)$ such that ax = e and xa = f (and then

$$e \mathcal{L} x, f \mathcal{R} x.$$

a	e = ax
f = xa	x

Proof. For the first part, one just has to define e = ax and f = xa. As we have seen, e and f are idempotents satisfying the required properties.

The converse follows directly from the proof of Corollary 8.10 (Corollary to Green's Lemmas).

Example 8.12.

- (1) For $\mathcal{M}^0 = \mathcal{M}^0(G; I; \Lambda; P)$ we know that $\mathcal{M}^0 \setminus \{0\}$ is a \mathcal{D} -class. We have $H_{i\lambda} = \{(i, g, \lambda) \mid g \in G\}$. If $p_{\lambda i} \neq 0$, $H_{i\lambda}$ is a group \mathcal{H} -class. If $p_{\lambda i}, p_{\mu j} \neq 0$ then $H_{i\lambda} \cong H_{j\mu}$ (already seen directly).
- (2) The Bicyclic Monoid B is bisimple with $E(B) = \{(a, a) \mid a \in \mathbb{N}^0\}$ and $H_{(a,a)} = \{(a, a)\}$. Clearly $H_{(a,a)} \cong H_{(b,b)}$.
- (3) In \mathcal{T}_n , then $\alpha \mathcal{D} \beta \Leftrightarrow \rho(\alpha) = \rho(\beta)$ where $\rho(\alpha) = |\operatorname{Im}(\alpha)|$. By Corollary 8.10, if $\varepsilon, \mu \in E(\mathcal{T}_n)$ and $\rho(\varepsilon) = \rho(\mu) = m$ say, then $H_{\varepsilon} \cong H_{\mu}$. In fact $H_{\varepsilon} \cong H_{\mu} \cong \mathcal{S}_m$.