8.1. Green's Theory for Regular \mathcal{D} -classes

If $e \in E(S)$ then H_e is a subgroup of S (by the Maximal Subgroup Theorem or Green's Theorem). If $e \mathcal{D} f$ then $|H_e| = |H_f|$ (by the Corollary to Green's Lemmas). We will show that $H_e \cong H_f$.

Lemma 8.8. We have that

- (i) If a = axa then ax, xa ∈ E(S) and ax R a L xa,
- (ii) If b R f ∈ E(S), then b is regular;
- (iii) If b L f ∈ E(S), then b is regular.

Proof.

- We have already proven this.
- (ii) If $b \mathcal{R} f$ then fb = b. Also, f = bs for some $s \in S^1$. Therefore b = fb = bsb and it follows that b is regular.

(iii) Dual to (ii).

From Lemma 8.8 an element $a \in S$ is regular if and only if it is \mathcal{R} -related to an idempotent. Dually, $a \in S$ is regular if and only if it is \mathcal{L} -related to an idempotent.

Lemma 8.9 (Regular \mathcal{D} -class Lemma). If a \mathcal{D} b then if a is regular, so is b.

Proof. Let a be regular with a \mathcal{D} b. Then a \mathcal{R} c \mathcal{L} b for some $c \in S$.

a	e	c	
		f	
		b	

Figure 6. The egg box diagram of D.

There exists $e = e^2$ with $e \mathcal{R} a \mathcal{R} c$ by (i) above. By (ii), c is regular. By (i), $c \mathcal{L} f = f^2$. By (iii), b is regular.

Corollary 8.10. [Corollary to Green's Lemmas] Let $e, f \in E(S)$ with $e \mathcal{D} f$. Then $H_e \cong H_f$.

Proof. Suppose $e, f \in E(S)$ and $e \mathcal{D} f$. There exists $a \in S$ with $e \mathcal{R} a \mathcal{L} f$. As $e \mathcal{R} a$ there exists $s \in S^1$ with e = as and ea = a. So a = asa. Put x = fse. Then