We want to show that fxe and ef are mutually inverse:

$$ef(fxe)ef = ef^{2}xe^{2}f = efxef = ef,$$

$$(fxe)ef(fxe) = fxe^{2}f^{2}xe = f(xefx)e = fxe.$$

Therefore we have $ef = (fxe)' = fxe \in E(S)$, so the product of any two idempotents is an idempotent. Therefore E(S) is a band. Let $e, f \in E(S)$. Then

$$ef(fe)ef = ef^2e^2f = efef = ef$$

and fe(ef)fe = fe similarly. Therefore we have ef = (fe)' = fe.

Example 8.7.

Let B be the Bicyclic Semigroup. Then

$$E(B) = \{(a, a) \mid a \in \mathbb{N}^0\},\$$

and

$$(a,a)(b,b) = (t,t) = (b,b)(a,a)$$

where $t = \max\{a, b\}$. So E(B) is commutative, and since B is regular, we have that it is inverse. Note that (a, b)' = (b, a).

- (2) \mathcal{T}_X we know \mathcal{T}_X is regular. For $|X| \ge 2$ let $x, y \in X$ with $x \ne y$ we have $c_x, c_y \in E(\mathcal{T}_X)$. Then $c_x c_y \ne c_y c_x$ so \mathcal{T}_X is not inverse.
- (3) If S is a band, then S is regular. Furthermore we have

$$S$$
 is inverse $\Leftrightarrow ef = fe$ for all $e, f \in E(S)$,
 $\Leftrightarrow ef = fe$ for all $e, f \in S$,
 $\Leftrightarrow S$ is a semilattice.

(4) Let $\mathcal{M}^0 = \mathcal{M}^0(G; I, \Lambda; P)$. If $p_{\lambda i}, p_{\mu i}$ are both non-zero, then

$$(i, p_{\lambda i}^{-1}, \lambda), (i, p_{\mu i}^{-1}, \mu) \in E(\mathcal{M}^0)$$

and

$$(i,p_{\lambda i}^{-1},\lambda)(i,p_{\mu i}^{-1},\mu)=(i,p_{\mu i}^{-1},\mu)(i,p_{\lambda i}^{-1},\lambda)$$

if and only if $\lambda = \mu$. So for \mathcal{M}^0 to be inverse, for every $i \in I$ there must be exactly one $\lambda \in \Lambda$ with $p_{\lambda i} \neq 0$; dually for each $\kappa \in \Lambda$ there exists exactly one $j \in I$ with $p_{\kappa j} \neq 0$.

It is an Exercise to check that, conversely, if the above condition holds then \mathcal{M}^0 is inverse and isomorphic to a Brandt semigroup.