

Figure 5. The egg box diagram of D_a .

- (3) If S is a band then S is regular as $e = e^3$ for all $e \in S$; S need not be inverse.
- (4) B is regular because (a,b) = (a,b)(b,a)(a,b) for all $(a,b) \in B$. Furthermore, B is inverse see later.
- M⁰ is regular (see "Proposition 7.3, Rees Matrix Facts").
- (6) T_X is regular (see Exercises).
- (7) $(\mathbb{N}, +)$ is not regular as, for example $1 \neq 1 + a + 1$ for any $a \in \mathbb{N}$.

Theorem 8.6. [Inverse Semigroup Theorem] A semigroup S is inverse iff S is regular and E(S) is a semilattice (i.e. ef = fe for all $e, f \in E(S)$).

Proof. (\Leftarrow) Let $a \in S$. As S is regular, a has an inverse by Lemma 8.3. Suppose $x, y \in V(a)$. Then

$$a = axa$$
 $x = xax$ $a = aya$ $y = yay$,

so $ax, xa, ay, ya \in E(S)$. This gives us that

$$\begin{array}{l} x = xax = x(aya)x = (xa)(ya)x = (ya)(xa)x = y(axa)x \\ = yax = y(aya)x = y(ay)(ax) = y(ax)(ay) = y(axa)y = yay = y. \\ \end{array}$$

So |V(a)| = 1 and S is inverse.

Conversely, suppose S is inverse. Let a' denote the unique inverse of $a \in S$. Certainly S is regular. Let $e \in E(S)$. Then e is an inverse of e, because e = eee and e = eee, so the inverse of any idempotent e is just itself: e' = e.

Let $e, f \in E(S)$. Let x = (ef)'. Consider the element fxe. Then

$$(fxe)^2 = (fxe)(fxe) = f(xefx)e = fxe$$

as x = (ef)'. So $fxe \in E(S)$ and therefore fxe = (fxe)'.