Examples of regular semigroups: any band, Rees matrix semigroups, groups.

Examples of non-regular semigroups: $(\mathbb{N}, +), (\mathbb{Z}, *)$

Nontrivial null (or zero) semigroups i.e. $S = X \cup \{0\}$ with $X \neq \emptyset$ and all products are 0. Note that $(\mathbb{N}, +)$ has no regular element.

Definition 8.2. An element $a' \in S$ is an inverse of a if

$$a = aa'a$$
 and $a' = a'aa'$.

We denote by V(a) the set of inverses of a.

If G is a group then $V(a) = \{a^{-1}\}\$ for all $a \in G$.

Caution: Inverses need not be unique. For example, in a rectangular band $T = I \times \Lambda$,

$$(i, j)(k, \ell)(i, j) = (i, j)$$

 $(k, \ell)(i, j)(k, \ell) = (k, \ell)$

for any (i, j) and (k, ℓ) . So every element is an inverse of every other element.

Lemma 8.3. If $a \in S$, then a is regular $\Leftrightarrow V(a) \neq \emptyset$.

Proof. If $V(a) \neq \emptyset$, clearly a is regular. Conversely suppose that a is regular. Then there exists $x \in S$ with a = axa. Put a' = xax. Then

$$aa'a = a(xax)a = (axa)xa = axa = a,$$

and

$$a'aa' = (xax)a(xax) = x(axa)(xax)$$
$$= xa(xax) = x(axa)x = xax = a'.$$

So $a' \in V(a)$.

Note. If a = axa then

$$(ax)^2 = (ax)(ax) = (axa)x = ax$$

so $ax \in E(S)$ and dually, $xa \in E(S)$. Moreover

$$a = axa$$
 $ax = ax \Rightarrow a \mathcal{R} ax$,
 $a = axa$ $xa = xa \Rightarrow a \mathcal{L} xa$.

Definition 8.4. S is inverse if |V(a)| = 1 for all $a \in S$, i.e. every element has a unique inverse.

Example 8.5.

- Groups are inverse; V(a) = {a⁻¹}.
- (2) A rectangular band T is regular; but (as every element of T is an inverse of every other element) T is not inverse (unless T is trivial).