	L_1	L_{λ}	
R_1	a	q_{λ}	
R_i	r_i	$r_i a q_\lambda$	

So, $P = (p_{\lambda i}) = (q_{\lambda}r_i)$ is a $\Lambda \times I$ matrix over $G \cup \{0\}$. For any $i \in I$, by the 0-simple Lemma (Lemma 7.15) we have $Sr_iS = S$. So, $ur_iv \neq 0$ for some $u, v \in S$. Say, $u = r_kbq_{\lambda}$ for some k, λ and b. Then

$$p_{\lambda i} = q_{\lambda} r_i \neq 0$$

as $r_k b q_{\lambda} r_i v \neq 0$. Therefore every column of P has a non-zero entry. Dually for rows. Therefore

$$\mathcal{M}^0 = \mathcal{M}^0(G; I; \Lambda; P)$$

is a Rees Matrix Semigroup over a group G. For any $x \in \mathcal{M}^0$ (x = 0 or x is a triple) then

$$(0x)\theta = 0\theta = 0 = 0(x\theta) = 0\theta x\theta.$$

Also, $(x0)\theta = x\theta 0\theta$. For (i, a, λ) , $(k, b, \mu) \in \mathcal{M}^0$ we have

$$\begin{split} \big((i,a,\lambda)(k,b,\mu)\big)\theta &= \begin{cases} 0\theta & \text{if } p_{\lambda k} = 0,\\ (i,ap_{\lambda k}b,\mu)\theta & \text{if } p_{\lambda k} \neq 0, \end{cases}\\ &= \begin{cases} 0 & \text{if } p_{\lambda k} = 0,\\ r_i a p_{\lambda k} b q_\mu & \text{if } p_{\lambda k} \neq 0, \end{cases}\\ &= r_i a p_{\lambda k} b q_\mu,\\ &= r_i a q_\lambda r_k b q_\mu,\\ &= (i,a,\lambda)\theta(k,b,\mu)\theta. \end{split}$$

Therefore θ is a morphism, and since it is bijective, it is an isomorphism.

8. Regular Semigroups

DEFINITION 8.1. We say that $a \in S$ is regular if a = axa for some $x \in S$. The semigroup S is regular if every $a \in S$ is regular.