Proof. If $S \cong \mathcal{M}^0(G; I; \Lambda; P)$ where G is a group, we know \mathcal{M}^0 is completely 0-simple (by Proposition 7.3, Rees Matrix facts and Example 7.9), hence S is completely 0-simple.

Conversely, suppose that S is completely 0-simple. By the $\mathcal{D} = \mathcal{J}$ Theorem, $\mathcal{D} = \mathcal{J}$ (as S has M_R and M_L , it must have (\star)). As S is 0-simple, the $\mathcal{D} = \mathcal{J}$ -classes are $\{0\}$ and $S \setminus \{0\}$. Let $D = S \setminus \{0\}$. By Corollary 7.16, D contains an idempotent $e = e^2$.

Let $\{R_i \mid i \in I\}$ be the set of \mathcal{R} -classes in D (so I indexes the non-zero \mathcal{R} -classes). Let $\{L_{\lambda} \mid \lambda \in \Lambda\}$ be the set of \mathcal{L} -classes in D (so Λ indexes the non-zero \mathcal{L} -classes).

Denote the \mathcal{H} -class $R_i \cap L_\lambda$ by $H_{i\lambda}$. Since D contains an idempotent e, D contains the subgroup H_e (Maximum Subgroup Theorem or Green's Theorem). Without loss of generality we can assume that both I and Λ contain a special symbol 1, and we can also assume that $e \in H_{11}$. Put $G = H_{11}$, which is a group.

For each $\lambda \in \Lambda$ let us choose and fix an arbitrary $q_{\lambda} \in H_{1\lambda}$ (take $q_1 = e$). Similarly, for each $i \in I$ let $r_i \in H_{i1}$ (take $r_1 = e$). Notice that

$$e = e^2, e \mathcal{R} q_{\lambda} \Rightarrow eq_{\lambda} = q_{\lambda}$$

Thus, by Green's Lemma,

$$\rho_{q_{\lambda}}: H_e = G \rightarrow H_{1\lambda}$$

is a bijection. Now,

$$e = e^2$$
, $e \mathcal{L} r_i \Rightarrow r_i e = r_i$.

By the dual of Green's Lemma

$$\lambda_{r_i}: H_{1\lambda} \to H_{i\lambda}$$

is a bijection. Therefore for any $i \in I$, $\lambda \in \Lambda$ we have

$$\rho_{q_{\lambda}} \lambda_{r_{\epsilon}} : G \rightarrow H_{i\lambda}$$

is a bijection.

Note. By the definition of $\rho_{q_{\lambda}}$ and λ_{r_i} , we have that

$$a\rho_{q_{\lambda}}\lambda_{r_{i}} = r_{i}aq_{\lambda}$$

for every $a \in G, i \in I$ and $\lambda \in \Lambda$.

So, each element of $H_{i\lambda}$ has a unique expression as $r_i a q_\lambda$ where $a \in G$. Hence the mapping

$$\theta: (I \times G \times \Lambda) \cup \{0\} \to S$$

given by $0\theta = 0$, $(i, a, \lambda)\theta = r_i a q_\lambda$ is a bijection.

Put $p_{\lambda i} = q_{\lambda} r_i$. If $p_{\lambda i} \neq 0$ then $q_{\lambda} r_i \mathcal{D} q_{\lambda} \mathcal{D} r_i$. By the rectangular property

$$e \mathcal{R} q_{\lambda} \mathcal{R} q_{\lambda} r_{i} \mathcal{L} r_{i} \mathcal{L} e$$

so that $q_{\lambda}r_i \in G$.