(iv) the *J*-classes are {0} and S \ {0}.

Proof. (i) ⇔ (iii) ⇔ (iv) is a standard exercise.

(ii) \Rightarrow (iii): Let $a \in S \setminus \{0\}$. Then

$$S = SaS \subseteq S^1aS^1 \subseteq S$$

and therefore $S = S^1 a S^1$.

(i) \Rightarrow (ii): Since $S^2 \neq 0$ and S^2 is an ideal, then $S^2 = S$. Therefore

$$S^3 = SS^2 = S^2 = S \neq 0.$$

Let $I = \{x \in S \mid SxS = 0\}$. Clearly $0 \in I$ and hence $I \neq \emptyset$. If $x \in I$ and $s \in S$, then

$$0 \subseteq SxsS \subseteq SxS = 0$$
.

Therefore SxsS = 0 and so $xs \in I$. Dually $sx \in I$; therefore I is an ideal. If I = S, then

$$S^{3} = SIS,$$

$$= \bigcup_{x \in I} SxS,$$

$$= 0.$$

This is a contradiction, therefore $I \neq S$. Hence I = 0. Let $a \in S \setminus \{0\}$. Then SaS is an ideal and as $a \notin I$ we have $SaS \neq 0$. Hence SaS = S.

Corollary 7.16. Let S be completely 0-simple. Then S contains a non-zero idempotent.

Proof. Let $a \in S \setminus \{0\}$. Then SaS = S, therefore there exists a $u, v \in S$ with a = uav. So,

$$a = uav = u^2av^2 = \cdots = u^nav^n$$

for all n. Hence $u^n \neq 0$ for all $n \in \mathbb{N}$. Pick n, m with $u^n \mathcal{R} u^{n+1}$, $u^m \mathcal{L} u^{m+1}$. Notice

$$u^{n+1} \mathcal{R} u^{n+2}$$

as R is a left congruence. Similarly,

$$u^{n+2} \mathcal{R} u^{n+3}$$

we deduce that $u^n \mathcal{R} u^{n+t}$ for all $t \ge 0$. Similarly $u^m \mathcal{L} u^{m+t}$ for all $t \ge 0$. Let $s = \max\{m, n\}$. Then $u^s \mathcal{R} u^{2s}$, $u^s \mathcal{L} u^{2s}$ so $u^s \mathcal{H} u^{2s} = (u^s)^2$. Hence by Corollary 5.7, u^s lies in a subgroup. Therefore $u^s \mathcal{H} e$ for some idempotent e. As $u^s \ne 0$ and $H_0 = \{0\}$, we have $e \ne 0$.

Theorem 7.17 (Rees' Theorem - 1941). Let S be a semigroup with zero. Then S is completely 0-simple $\Leftrightarrow S$ is isomorphic to a Rees Matrix Semigroup over a group.