for all $n \in \mathbb{N}$. By (\star) , there exists n with $(xu)^n \mathcal{L}(xu)^{n+1}$. Therefore

$$b = (xu)^n b(vy)^n \mathcal{L}(xu)^{n+1} b(vy)^n = xu((xu)^n b(vy)^n) = xub.$$

Therefore $b \mathcal{L} xub$, so

$$S^1b = S^1xub \subseteq S^1ub \subseteq S^1b$$
.

So $S^1b = S^1ub$, which means that $b \mathcal{L} ub$. Dually, $b \mathcal{R} bv$. Therefore $a = ubv \mathcal{R} ub \mathcal{L} b$. So $a \mathcal{D} b$ and $\mathcal{J} \subseteq \mathcal{D}$. Consequently, $\mathcal{D} = \mathcal{J}$.

As a consequence we have the following:

Corollary 7.13. If a semigroup S has M_L and M_R , then it satisfies (\star) and thus $\mathcal{D} = \mathcal{J}$.

In the same vein we have:

Lemma 7.14. The Rectangular Property:

Let S satisfy (\star) . Then for all $a, b \in S$ we have

- (i) a J ab ⇔ a D ab ⇔ a R ab,
- (ii) b J ab ⇔ b D ab ⇔ b L ab.

Proof. We prove (i), (ii) being dual. Now,

$$a \mathcal{J} ab \Leftrightarrow a \mathcal{D} ab$$

as $\mathcal{D} = \mathcal{J}$. Clearly if $a \mathcal{R} ab$ then $a \mathcal{D} ab$; as $\mathcal{R} \subseteq \mathcal{D}$. Conversely, If $a \mathcal{J} ab$ then there exists $x, y \in S^1$ with

$$a = xaby = xa(by) = x^n a(by)^n$$

for all n. Pick n with $(by)^n \mathcal{R} (by)^{n+1}$. Then

$$a = x^n a(by)^n \mathcal{R} x^n a(by)^{n+1} = x^n a(by)^n by = aby.$$

Now

$$aS^1 = abyS^1 \subseteq abS^1 \subseteq aS^1$$
.

Hence $aS^1 = abS^1$ and $a \mathcal{R} ab$.

7.1. Completely 0-simple semigroups

Let S have a 0. Recall that S is θ -simple if and only if 0 (properly, $\{0\}$) and S are the only ideals and $S^2 \neq 0$. If in addition S has M_R and M_L , then S is completely θ -simple.

Lemma 7.15. [0-Simple Lemma] Let S have a 0 and $S^2 \neq 0$. Then the following are equivalent:

- (i) S is θ-simple,
- (ii) SaS = S for all a ∈ S \ {0},
- (iii) $S^1aS^1 = S$ for all $a \in S \setminus \{0\}$,