Proof. If every chain with ⊇ terminates, then clearly we cannot have an infinite strict chain

$$S^1a_1 \supset S^1a_2 \supset \dots$$

So S has M_L .

Conversely, suppose S has M_L and we have a chain

$$S^1a_1 \supseteq S^1a_2 \supseteq \dots$$

Let the strict inclusions be at the j_i th steps:

$$S^1 a_1 = S^1 a_2 = \dots = S^1 a_{j_1} \supset S^1 a_{j_1+1} = S^1 a_{j_1+2}$$

= $\dots = S^1 a_{j_2} \supset S^1 a_{j_2+1} = \dots$

Then

$$S^1a_{j_1} \supset S^1a_{j_2} \supset \dots$$

As S has M_L , this chain is finite with length n say. Then

$$S^1 a_{j_n+1} = S^1 a_{j_n+2} = \dots$$

and our sequence has stabilised.

DEFINITION 7.6. The ascending chain condition (a.c.c.) on principal ideals on left/right ideals M^L (M^R) is defined as above but with the inclusions reversed.

The analogue of the Chain Lemma holds for M^L and (M^R) .

Example 7.7. Every finite semigroup has M_L, M_R, M^L, M^R . For example, if

$$S^1a_1 \supset S^1a_2 \supset S^1a_3 \supset \dots,$$

then in every step, the cardinality of the sets must decrease at least by one, so the length of a strict sequence cannot be greater than |S|.

Example 7.8. The Bicyclic semigroup B has M^L and M^R . We know

$$B(x,y) = \big\{ (p,q) \mid q \geqslant y \big\}$$

and so

$$B(x,y) \subseteq B(u,v) \Leftrightarrow y \geqslant v,$$

and inclusion is strict if and only if y > v. If we had an infinite chain

$$B(x_1, y_1) \subset B(x_2, y_2) \subset B(x_3, y_3) \subset ...$$

then we would have

$$y_1 > y_2 > y_3 > \dots$$

which is impossible in \mathbb{N} .

Hence M^L holds, dually M^R holds.