(6) {0} is a D-class and a J-class. If (i, a, λ), (j, b, μ) ∈ M⁰ then

$$(i, a, \lambda) \mathcal{R} (i, a, \mu) \mathcal{L} (j, b, \mu)$$

- so (i, a, λ) \mathcal{D} (j, b, μ) and so (i, a, λ) \mathcal{J} (j, b, μ) . Therefore $\mathcal{D} = \mathcal{J}$ and $\{0\}$ and $\mathcal{M}^0 \setminus \{0\}$ are the only classes.
- (7) We have already shown that the only J-classes are {0} and M⁰ \ {0}. Let i ∈ I, then there exists λ ∈ Λ with p_{λi} ≠ 0 so (i, 1, λ)² ≠ 0. Therefore (M⁰)² ≠ 0 and so M⁰ is 0-simple.
- (8) If xy R x, then clearly xy D x, because R ⊆ D. For the other direction, suppose that xy D x. Notice that the two D-classes are zero and everything else. If xy = 0, then necessarily x = 0, because D₀ = {0}. If xy ≠ 0, then necessarily x, y ≠ 0, so we have that

$$x = (i, a, \lambda)$$
 $y = (j, b, \mu).$

Then $xy = (i, ap_{\lambda i}b, \mu)$, so $xy \mathcal{R} x$. The result for \mathcal{L} is dual.

Some more facts!

- (9) Put H_{iλ} = {(i, a, λ) | a ∈ G}. By (5) we have H_{iλ} is an H-class (H_{iλ} = H_(i,e,λ)). If p_{λi} ≠ 0 we know (i, p_{λi}⁻¹, λ) is an idempotent and so H_{iλ} is a group, by the Maximal Subgroup Theorem. The identity is (i, p_{λi}⁻¹, λ) and (i, a, λ)⁻¹ = (i, p_{λi}⁻¹a⁻¹, p_{λi}⁻¹, λ).
- Subgroup Theorem. The identity is $(i, p_{\lambda i}^{-1}, \lambda)$ and $(i, a, \lambda)^{-1} = (i, p_{\lambda i}^{-1} a^{-1}, p_{\lambda i}^{-1}, \lambda)$. (10) If $p_{\lambda i} \neq 0$ and $p_{\mu j} \neq 0$ then $H_{i\lambda} \simeq H_{j\mu}$. It is clear that $(i, a, \lambda) \mapsto (j, a, \mu)$ is a bijection, but this is not in general a morphism. Exercise: find a morphism!

Chain conditions

A finitary property is a property held by all finite semigroups: chain conditions are one kind of finitary property.

Definition 7.4. A semigroup S has M_L if there are no infinite chains

$$S^1a_1 \supset S^1a_2 \supset S^1a_3 \supset \dots$$

of principal left ideals. M_L is the descending chain condition (d.c.c.) on principal left ideals.

The left/right dual is M_R .

Lemma 7.5 (The Chain Lemma). The semigroup S has M_L if and only if any chain

$$S^1a_1 \supset S^1a_2 \supset \dots$$

terminates (stabilizes) i.e. there exists $n \in \mathbb{N}$ with

$$S^1 a_n = S^1 a_{n+1} = \dots$$

