Definition 7.2. $a \in S$ is regular if there exists $x \in S$ with

$$a = axa$$

S is regular if every $a \in S$ is regular.

If S is regular then $a \mathcal{R} b \Leftrightarrow aS = bS \Leftrightarrow$ there exists $s, t \in S$ with a = bs and b = at, etc.

Proposition 7.3. Rees matrix facts Let $M^0 = M^0(G; I, \Lambda; P)$ be a Rees Matrix Semigroup over a group G.

- (i, a, λ) is idempotent ⇔ p_{λi} ≠ 0 and a = p⁻¹_{λi}.
- M⁰ is regular.
- (3) (i, a, λ) R (j, b, μ) ⇔ i = j.
- (4) $(i, a, \lambda) \mathcal{L}(j, b, \mu) \Leftrightarrow \lambda = \mu$.
- (5) $(i, a, \lambda) \mathcal{H} (j, b, \mu) \Leftrightarrow i = j \text{ and } \lambda = \mu.$
- (6) The D = J-classes are {0} and M⁰ \ {0} (so 0 and M⁰ are the only ideals).
- (7) M⁰ is 0-simple.
- (8) The so-called rectangular property:

$$\left. \begin{array}{l} xy \; \mathcal{D} \; x \Leftrightarrow xy \; \mathcal{R} \; x \\ xy \; \mathcal{D} \; y \Leftrightarrow xy \; \mathcal{L} \; y \end{array} \right\} \forall \, x,y \in \mathcal{M}^0$$

Proof. (1) We have that

$$(i, a, \lambda) \in E(\mathcal{M}^0) \Leftrightarrow (i, a, \lambda) = (i, a, \lambda)(i, a, \lambda),$$

 $\Leftrightarrow p_{\lambda i} \neq 0, (i, a, \lambda) = (i, ap_{\lambda i}a, \lambda),$
 $\Leftrightarrow p_{\lambda i} \neq 0, a = ap_{\lambda i}a,$
 $\Leftrightarrow p_{\lambda i} \neq 0 \text{ and } p_{\lambda i} = a^{-1}.$

(2) 0 = 000 so 0 is regular. Let $(i, a, \lambda) \in \mathcal{M}^0 \setminus \{0\}$ then there exists $j \in I$ with $p_{\lambda j} \neq 0$ and there exists $\mu \in \Lambda$ with $p_{\mu i} \neq 0$. Now,

$$(i,a,\lambda)(j,p_{\lambda j}^{-1}a^{-1}p_{\mu i}^{-1},\mu)(i,a,\lambda)=(i,a,\lambda)$$

and hence \mathcal{M}^0 is regular.

(3) {0} is an \mathcal{R} -class. If $(i, a, \lambda) \mathcal{R} (j, b, \mu)$ then there exists $(k, c, \nu) \in \mathcal{M}^0$ with

$$(i, a, \lambda) = (j, b, \mu)(k, c, \nu) = (j, bp_{\mu k}c, \nu)$$

and so i = j. Conversely, if i = j, pick k with $p_{\mu k} \neq 0$. Then

$$(i, a, \lambda) = (j, b, \mu)(k, p_{\mu k}^{-1}b^{-1}a, \lambda)$$

and together with the dual we have $(i, a, \lambda) \mathcal{R}(j, b, \mu)$

- (4) Dual.
- (5) This comes from (3) and (4) above.

0. / TV

