Then $\rho_s: L_a \to L_b$ and $\rho_{s'}: L_b \to L_a$ are mutually inverse, \mathcal{R} -class preserving bijections (i.e. if $c \in L_a$, then $c \mathcal{R} c \rho_s$ and if $d \in L_b$ then $d \mathcal{R} d \rho_{s'}$).

Proof. If $c \in L_a$ then

$$c\rho_s = cs \mathcal{L} \ as = b$$
,

because \mathcal{L} is a right congruence. So $c\rho_s \mathcal{L} b$ therefore $\rho_s : L_a \to L_b$. Dually $\rho_{s'} : L_b \to L_a$. Let $c \in L_a$. Then c = ta for some $t \in S$. Now

$$c\rho_s\rho_{s'} = tas\rho_{s'} = tass' = tbs' = ta = c.$$

So $\rho_s \rho_{s'} = I_{L_a}$, dually, $\rho_{s'} \rho_s = I_{L_b}$.

Again, let $c \in L_a$. Then

$$cs = c \cdot s$$
,
 $c = cs \cdot s'$.

Therefore $c \mathcal{R} cs = c\rho_s$.

Continuing Lemma 6.6. For any $c \in L_a$ we have $\rho_s : H_c \to H_{cs}$ is a bijection with inverse $\rho_{s'} : H_{cs} \to H_c$. In particular – put c = a then

$$\rho_s: H_a \to H_b$$
 and $\rho_s: H_b \to H_a$

are mutually inverse bijections.

Let $s \in S^1$. Then we define $\lambda_s : S \to S$ by $a\lambda_s = sa$.

S. Then either $H^2 \cap H = \emptyset$ or H is a subgroup of S.

Lemma 6.7 (Dual of Green's Lemma). Let $a, b \in S$ be such that $a \mathcal{L} b$ and let $t, t' \in S$ be such that ta = b and t'b = a. Then $\lambda_t : R_a \to R_b$ and $\lambda_{t'} : R_b \to R_a$ are mutually inverse \mathcal{L} -class preserving bijections. In particular, for any $c \in R_a$ we have $\lambda_t : H_c \to H_{tc}$, $\lambda_{t'} : H_{tc} \to H_c$ are mutually inverse bijections. So, if c = a we have $\lambda_t : H_a \to H_b$, $\lambda_{t'} : H_b \to H_a$ are mutually inverse bijections.

Corollary 6.8. If a D b then there exists a bijection $H_a \rightarrow H_b$.

Proof. If $a \mathcal{D} b$ then there exists $h \in S$ with $a \mathcal{R} h \mathcal{L} b$. There exists a bijection $H_a \to H_h$ by Green's Lemma and we also have that there exists a bijection $H_h \to H_h$ by the Dual of Green's Lemma. Therefore there exists a bijection $H_a \to H_h$.

Thus any two \mathcal{H} -classes in the same \mathcal{D} -class have the same cardinality (just like any two \mathcal{R} - and \mathcal{L} -classes).

Theorem 6.9 (Green's Theorem – Strong Version). Let H be an H-class o'

