33

• Suppose that $a \nu b \nu c$ then there exists $x, y \in A$ with

$$a \rho x \lambda b \lambda y \rho c$$
.

(Note that first we use that $\nu = \rho \circ \lambda$, and next we use that $\nu = \lambda \circ \rho$.) From $x \lambda b \lambda y$ we have $x \lambda y$, so

$$a \rho x \lambda y \rho c$$
.

Therefore $x \ \nu \ c$ hence there exists $z \in A$ such that $x \ \rho \ z \ \lambda \ c$, therefore $a \ \rho \ z \ \lambda \ c$ and hence $a \ \nu \ c$. Therefore ν is transitive.

We have shown that ν is an equivalence relation. If $(a,b) \in \rho$ then $a \rho b \lambda b$ so $(a,b) \in \nu$. Similarly if $(a,b) \in \lambda$ then $a \rho a \lambda b$ so $(a,b) \in \nu$. Hence $\rho \cup \lambda \subseteq \nu$.

Now, suppose $\rho \cup \lambda \subseteq \tau$ where τ is an equivalence relation. Let $(a, b) \in \nu$. Then we have $a \rho c \lambda b$ for some c. Hence $a \tau c \tau b$ so $a \tau b$ as τ is transitive. Therefore $\nu \subseteq \tau$.

The smallest equivalence relation containing any ρ and λ is denoted by $\rho \vee \lambda$; we have shown that if ρ and λ commute, then $\rho \vee \lambda = \rho \circ \lambda$.

DEFINITION 6.4. $\mathcal{D} = \mathcal{R} \circ \mathcal{L}$, i.e. $a \mathcal{D} b \Leftrightarrow \exists c \in S \text{ with } a \mathcal{R} c \mathcal{L} b$.

Lemma 6.5 (The \mathcal{D} Lemma). $\mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$

Proof. We prove that $\mathcal{R} \circ \mathcal{L} \subseteq \mathcal{L} \circ \mathcal{R}$, the proof of the other direction being dual. Suppose that $a \mathcal{R} \circ \mathcal{L} b$. Then there exists $c \in S$ with

There exists $u, v, s, t \in S^1$ with

$$a = cu$$
 $c = av$ $c = sb$ $b = tc$.

(1) (2) (3)

Put d = bu then we have

$$\begin{split} a &= cu = sbu = sd, \\ d &= bu = tcu = ta. \\ d &= tcu = ta. \end{split}$$

Therefore $a \mathcal{L} d$. Also

$$b = tc = tav = tcuv = buv = dv.$$

Therefore $b \mathcal{R} d$ and hence $a \mathcal{L} \circ \mathcal{R} b$.

Hence \mathcal{D} is an equivalence relation and $\mathcal{D} = \mathcal{L} \vee \mathcal{R}$. By definition

0. / ٣٣

