6. \mathcal{D}, \mathcal{J} AND GREEN'S LEMMAS

 $\text{Recall } S^1aS^1 = \{xay \mid x,y \in S^1\}.$

Definition 6.1. We say that $a \mathcal{J} b$ if and only if

$$a \mathcal{J} b \Leftrightarrow S^1 a S^1 = S^1 b S^1$$

Check:

$$a \mathcal{J} b \Leftrightarrow \exists s, t, u, v \in S^1 \text{ with } a = sbt \quad b = uav.$$

NOTE. If $a \mathcal{L} b$, then $S^1 a = S^1 b$ so $S^1 a S^1 = S^1 b S^1$ so $a \mathcal{J} b$, i.e. $\mathcal{L} \subseteq \mathcal{J}$, dually $\mathcal{R} \subseteq \mathcal{J}$.

Recall: S is simple if S is the only ideal of S. If S is simple and $a, b \in S$ then

$$S^1 a S^1 = S = S^1 b S^1$$
 so $a \mathcal{J} b$

and $\mathcal{J} = \omega$ (the universal relation). Conversely if $\mathcal{J} = \omega$ and I is an ideal of S, then pick any $a \in I$ and any $s \in S$. We have

$$s \in S^1 s S^1 = S^1 a S^1 \subseteq I$$
.

Therefore I = S and S is simple.

We have shown that that

S is simple
$$\Leftrightarrow \mathcal{J} = \omega$$
.

Similarly if S has a zero, then $\{0\}$ and $S \setminus \{0\}$ are the only \mathcal{J} -classes iff $\{0\}$ and S are the only ideals.

6.1. Composition of Relations

Definition 6.2. If ρ and λ are relations on A we define

$$\rho \circ \lambda = \big\{ (x,y) \in A \times A \mid \exists \, z \in A \text{ with } (x,z) \in \rho \text{ and } (z,y) \in \lambda \big\}.$$

Lemma 6.3. If ρ , λ are equivalence relations and if $\rho \circ \lambda = \lambda \circ \rho$ then $\rho \circ \lambda$ is an equivalence relation. Also, it is the smallest equivalence relation containing $\rho \cup \lambda$.

Proof. Put $\nu = \rho \circ \lambda = \lambda \circ \rho$

- for any a ∈ A, a ρ a λ a so a ν a and ν is reflexive.
- Symmetric an exercise.

0. / ٣٢