

Now α has a tail with length ≥ 2 and therefore α doesn't lie in any subgroup.

Let us take the constant element c₁ ∈ T₅

$$c_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

This has the following map diagram

Now c_1 has no tails of length ≥ 2 , therefore c_1 lies in a subgroup and hence c_1 lies in a subgroup. Note that actually $c_1^2 = c_1$.

Now for any β ,

$$\beta \in H_{c_1} \Leftrightarrow \beta \mathcal{H} c_1,$$

 $\Leftrightarrow \beta \mathcal{R} c_1 \text{ and } \beta \mathcal{L} c_1,$
 $\Leftrightarrow \ker \beta = \ker c_1 \text{ and } \operatorname{Im} \beta = \operatorname{Im} c_1,$
 $\Leftrightarrow \ker \beta \text{ has classes } \{1, 2, 3, 4, 5\} \text{ and } \operatorname{Im} \beta = \{1\},$
 $\Leftrightarrow \beta = c_1.$

Therefore the maximal subgroup containing c_1 is $H_{c_1} = \{c_1\}$.

(3) Take the element

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 2 & 3 & 5 \end{pmatrix}.$$

This has map diagram

