

Figure 4. The classes of ker α and ker α^2 .

Proof.

$$\left|\underline{n}/\ker\alpha^2\right|=|\operatorname{Im}\alpha^2|\leq |\operatorname{Im}\alpha|=|\underline{n}/\ker\alpha|\;.$$

Thus $\ker \alpha$ and $\ker \alpha^2$ have the same number of classes if and only if $|\operatorname{Im} \alpha| = |\operatorname{Im} \alpha^2|$. It follows that $\ker \alpha = \ker \alpha^2$ if and only if $\operatorname{Im} \alpha = \operatorname{Im} \alpha^2$.

We now continue with the proof of Lemma 5.8:

We have that α lies in a subgroup $\Leftrightarrow \operatorname{Im} \alpha = \operatorname{Im} \alpha^2$. Note that elements of $\operatorname{Im} \alpha \setminus \operatorname{Im} \alpha^2$ are exactly those second vertices of tails in the map diagram of α which are not members of a cycle. Thus, $\operatorname{Im} \alpha^2 = \operatorname{Im} \alpha$ if and only if no such vertices exist, thus if and only if all tails have length smaller than or equal to 1.

An arbitrary element of T_n looks like:

Example 5.9.

We take an element of T₅ to be

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 3 & 1 \end{pmatrix} \in \mathcal{T}_5.$$

This has map diagram