Let $e, f \in E(S)$ with $e \neq f$. Since H_e and H_f are subgroups containing the idempotents e and f, respectively, $H_e \neq H_f$. This implies that $H_e \cap H_f = \emptyset$.

Theorem 5.6. [Green's Theorem] If $a \in S$, then a lies in a subgroup iff a \mathcal{H} a^2 .

Proof. See later. \Box

Corollary 5.7. Let $a \in S$. Then the following are equivalent:

- a lies in a subgroup,
- (ii) a *H* e, for some e ∈ E(S),
- (iii) H_a is a subgroup,
- (iv) a H a².

Proof. (i) \Rightarrow (ii): If $a \in G$, then $G \subseteq H_e$ where $e^2 = e$ is the identity for G. Therefore $a \in H_e$ so $a \mathcal{H} e$.

- (ii) \Rightarrow (iii): If $a \mathcal{H} e$, then $H_a = H_e$ and by the MST, H_e is a subgroup.
- (iii) \Rightarrow (i): Straightforward, for $a \in H_a$.
- (iii) \Rightarrow (iv) If H_a is a subgroup, then certainly H_a is closed. Hence $a, a^2 \in H_a$ therefore $a \mathcal{H} a^2$.
- (iv) ⇒ (i) This follows from Greeen's Theorem (Theorem 5.6).

Subgroups of \mathcal{T}_n

We use Green's Theorem to show the following.

Lemma 5.8. Let $\alpha \in \mathcal{T}_n$. Then α lies in a subgroup of $\mathcal{T}_n \Leftrightarrow$ the map diagram has no tails of length ≥ 2 .

Proof. We have that

$$\alpha$$
 lies in a subgroup $\Leftrightarrow \alpha \mathcal{H} \alpha^2$
 $\Leftrightarrow \alpha \mathcal{L} \alpha^2, \alpha \mathcal{R} \alpha^2$
 $\Leftrightarrow \operatorname{Im} \alpha = \operatorname{Im} \alpha^2, \ker \alpha = \ker \alpha^2.$

We know $\operatorname{Im} \alpha^2 \subseteq \operatorname{Im} \alpha$ (as $\mathcal{T}_n \alpha^2 \subseteq \mathcal{T}_n \alpha$). Let ρ be an equivalence on a set X. Recall

$$X/\rho = \{ [x] \mid x \in X \}$$

We have seen that

$$|\underline{n}/\ker\alpha| = |\operatorname{Im}\alpha|.$$

We know that $\ker \alpha \subseteq \ker \alpha^2$ ($\alpha^2 \mathcal{T}_n \subseteq \alpha \mathcal{T}_n$), which means that the $\ker \alpha^2$ -classes are just unions of $\ker \alpha$ -classes:

Claim. For $\alpha \in T_n$, $\text{Im } \alpha = \text{Im } \alpha^2 \Leftrightarrow \ker \alpha = \ker \alpha^2$.

0. / YA