Thus, idempotents are left/right/two-sided identities for their R/L/H-classes.

Lemma 5.4. Let G be a subgroup with idempotent e. Then $G \subseteq H_e$, thus, the elements of G are all \mathcal{H} -related.

Proof. Let G be a subgroup with idempotent e. Then for any $a \in G$ we have ea = a = ae and there exists $a^{-1} \in G$ with $aa^{-1} = e = a^{-1}a$. Then

$$\begin{cases}
ea = a \\
aa^{-1} = e
\end{cases} \Rightarrow a \mathcal{R} e$$

$$\begin{cases}
ae = a \\
a^{-1}a = e
\end{cases} \Rightarrow a \mathcal{L} e$$

$$\Rightarrow a \mathcal{H} e.$$

Therefore $a \mathcal{H} e$ for all $a \in G$, so $G \subseteq H_e$.

Theorem 5.5 (Maximal Subgroup Theorem). Let $e \in E(S)$. Then H_e is the maximal subgroup of S with identity e.

Proof. We have shown that if G is a subgroup with identity e, then $G \subseteq H_e$.

We show now that H_e itself is a subgroup with identity e.

We know that e is an identity for H_e . Suppose $a, b \in H_e$. Then $b \mathcal{H} e$, so $b \mathcal{R} e$ hence $ab \mathcal{R} ae (\mathcal{R} \text{ is left compatible})$ so

$$ab \mathcal{R} ae = a \mathcal{R} e$$
.

Also, $a \mathcal{L} e \Rightarrow ab \mathcal{L} eb = b \mathcal{L} e$ hence $ab \mathcal{H} e$ so $ab \in H_e$. It remains to show that for all $a \in H_e$ there exists $b \in H_e$ with ab = e = ba.

Let $a \in H_e$. Then, by definition of $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$, there exist $s, t \in S^1$ with

$$\underbrace{at}_{a\mathcal{R}e} = \underbrace{sa}_{a\mathcal{L}e}$$
.

We have

$$a(ete) = (ae)te = ate = ee = e = \cdots = (ese)a.$$

Let x = ete, y = ese so $x, y \in S$ and ex = xe = x, ey = ye = y. Also e = ax = ya. Now

$$x = ex = (ya)x = y(ax) = ye = y.$$

So let b = x = y. Then

$$\underbrace{bb = b \quad ba = e}_{b\mathcal{R}e} \qquad \underbrace{be = b \quad ab = e}_{b\mathcal{L}e}$$

so $b \mathcal{H} e$, thus $b \in H_e$. Hence H_e is indeed a subgroup.

