S_X is a subgroup of T_X. Notice

$$\alpha \mathcal{H} I_X \Leftrightarrow \operatorname{Im} \alpha = \operatorname{Im} I_X \text{ and } \ker \alpha = \ker I_X,$$

 $\Leftrightarrow \operatorname{Im} \alpha = X \text{ and } \ker \alpha = \iota,$
 $\Leftrightarrow \alpha \text{ is onto and } \alpha \text{ is one-one,}$
 $\Leftrightarrow \alpha \in \mathcal{S}_X.$

Therefore S_X is the \mathcal{H} -class of I_X .

DEFINITION 5.1. In the sequel, we are going to denote by L_a the \mathcal{L} -class of a; by R_a the \mathcal{R} -class of a and by H_a the \mathcal{H} -class of a.

Now $L_a = L_b \Leftrightarrow a \mathcal{L} b$ and $H_a = L_a \cap R_a$. For example, in B, we have $L_{(2,3)} = \{(x,3) \mid x \in \mathbb{N}^0\}$.

We are going to show that the maximal subgroups of semigroups are just the \mathcal{H} -classes of idempotents. As a consequence, we will see that whenever two subgroups are not disjoint, then they are both contained within a subgroup, as the following figure shows.

Figure 3. Existence of a Maximal Subgroup.

0. / 47

Lemma 5.2 (Principal Ideal for Idempotents). Let $a \in S$, $e \in E(S)$. Then

- (i) $S^1a \subseteq S^1e \Leftrightarrow ae = a$
- (ii) $aS^1 \subseteq eS^1 \Leftrightarrow ea = a$.

Proof. (We prove part (i) only because (ii) is dual). If ae = a, then $a \in S^1e$ so $S^1a \subseteq S^1e$ by the Principal Ideal Lemma. Conversely, if $S^1a \subseteq S^1e$ then by the Principal Ideal Lemma we have a = te for some $t \in S^1$. Then

$$ae = (te)e = t(ee) = te = a.$$

Corollary 5.3. Let $e \in E(S)$. Then we have

$$a \mathcal{R} e \Rightarrow ea = a,$$

 $a \mathcal{L} e \Rightarrow ae = a,$
 $a \mathcal{H} e \Rightarrow a = ae = ea.$