$$S^1 a S^1 = S a S \cup a S \cup S a \cup \{a\}.$$

Claim. aS^1 (S^1a, S^1aS^1) is the "smallest" right (left, two-sided ideal) containing a.

Proof. (for aS^1).

We have $a=a1 \in aS^1$ and $(aS^1)S=a(S^1S)\subseteq aS^1$. So, aS^1 is a right ideal containing a. If $a\in I$ and I is a right ideal, then $aS^1\subseteq IS^1=I\cup IS\subseteq I$.

Definition 4.7. We call aS^1 (S^1a, S^1aS^1) the principal right (left, two-sided) ideal generated by a.

If S is commutative then $aS^1 = S^1a = S^1aS^1$.

Example 4.8. In a group G we have

$$aG^{1} = G = G^{1}a = G^{1}aG^{1}$$

for all $a \in G$.

Example 4.9. In N under addition we have

$$n + "N^1" = I_n = \{n, n+1, n+2, \dots\}$$

Example 4.10. B is simple, so

$$B(m, n)B = B^{1}(m, n)B^{1} = B$$

for all $(m, n) \in B$. However:

Claim.
$$(m, n)B = (m, n)B^1 = \{(x, y) | x \ge m, y \in \mathbb{N}^0 \}$$

Proof. We have

$$(m,n)B = \{(m,n)(u,v) \mid (u,v) \in B\}$$

$$\subseteq \{(x,y) \mid x \geqslant m, y \in \mathbb{N}^0\}.$$

Let $x \ge m$ then

$$(m,n)(n+(x-m),y) = (m-n+n+(x-m),y),$$

= $(x,y).$

Therefore $(x,y) \in (m,n)B \Rightarrow \{(x,y) \mid x \geqslant m, y \in \mathbb{N}^0\} \subseteq (m,n)B$. Hence we have proved our claim.

Dually we have $B(m, n) = \{(x, y) \mid x \in \mathbb{N}^0, y \ge n\}.$

Lemma 4.11 (Principal Left Ideal Lemma). The following statements are equivalent;

- S¹a ⊆ S¹b,
- ii) $a \in S^1b$.