Example 4.4. Let G be a group and I a left ideal. Let $g \in G, a \in I$ then we have

$$q = (qa^{-1})a \in I$$

and so G = I. Therefore G has no proper left/right ideals. Hence G is simple.

Exercise: G^0 is 0-simple

Example 4.5. We have $(\mathbb{N}, +)$ is a semigroup. Let $n \in \mathbb{N}$. Now define $I_n \subseteq (\mathbb{N}, +)$ to be

$$I_n = \{n, n+1, n+2, \dots\},\$$

which is an ideal. Hence \mathbb{N} is not simple.

Note. $\{2, 4, 6, ...\}$ is a subsemigroup but not an ideal.

Example 4.6. The bicyclic semigroup B is simple.

Proof. Let $I \subseteq B$ be an ideal, say $(m,n) \in I$. Then $(0,n) = (0,m)(m,n) \in I$. Thus $(0,0) = (0,n)(n,0) \in I$. Let $(a,b) \in B$. Then

$$(a,b) = (a,b)(0,0) \in I$$

and hence $B = I \Rightarrow B$ is simple.

4.2. Principal Ideals

We make note of how the S^1 notation can be used. For example

$$\begin{split} S^1A &= \{sa \mid s \in S^1, a \in A\}, \\ &= \{sa \mid s \in S \cup \{1\}, a \in A\}, \\ &= \{sa \mid s \in S, a \in A\} \cup \{1a \mid a \in A\}, \\ &= SA \cup A. \end{split}$$

In particular, if $A = \{a\}$ then $S^1a = Sa \cup \{a\}$. So,

$$S^1a = Sa \Leftrightarrow a \in Sa,$$

 $\Leftrightarrow a = ta$

for some $t \in S$. We have $S^1a = Sa$ for $a \in S$ if:

- S is a monoid (then a = 1a).
- $a \in E(S)$ (then a = aa).
- a is regular, i.e. there exists x ∈ S with a = axa (then a = (ax)a).

But in $(\mathbb{N}, +)$ we have $1 \not\in 1 + \mathbb{N}$. Dually,

$$aS^1 = aS \cup \{a\}$$

and similarly