0./19

- (3) $AC = BC \not\Rightarrow A = B$ and $CA = CB \not\Rightarrow A = B$, i.e. the power semigroup is not cancellative think of a right zero semigroup, there AC = BC = C for all $A, B, C \subseteq S$.
- (4) A is isomorphic to the subsemigroup $\{a \mid a \in A\}$ of $\mathcal{P}(A)$.
- (5) $S^1S = S = SS^1$.

Definition 4.1. Let $\emptyset \neq I \subseteq S$ then I is

- (1) a left ideal if $SI \subseteq I$ (i.e. $a \in I, s \in S \Rightarrow sa \in I$);
- (2) a right ideal if IS ⊆ I;
- (3) an (two-sided) ideal if $IS \cup SI \subseteq I$, that is, I is both a left and a right ideal.

Note that if S is commutative, (1),(2) and (3) above coincide.

If $\emptyset \neq I \subseteq S$ then we have:

I is a left ideal $\Leftrightarrow S^1I \subseteq I$;

I is a right ideal $\Leftrightarrow IS^1 \subseteq I$;

I is an ideal $\Leftrightarrow S^1IS^1 \subseteq I$.

Note that any (left/right) ideal is a subsemigroup.

Example 4.2. (1) Let $i \in I$ then $\{i\} \times J$ is a right ideal in a rectangular band $I \times J$.

(2) Let $m \in \mathbb{N}^0$ be fixed. Then $I_m = \{(x, y) \mid x \ge m, y \in \mathbb{N}^0\}$ is a right ideal in the bicyclic semigroup B.

Indeed, let $(x, y) \in I_m$ and let $(a, b) \in B$. Then

$$(x,y)(a,b) = (x-y+t, b-a+t),$$

where $t = \max\{y, a\}$. Now, we know that $x \ge m$ and that $t \ge y$, so $t - y \ge 0$. Adding up these two inequalities, we get that $x - y + t \ge m$, thus the product is indeed in I_m .

- (3) If Y ⊆ X then we have {α ∈ T_X | Im α ⊆ Y} is a left ideal of T_X.
- (4) For any $n \in \mathbb{N}$ we define

$$S^n = \{a_1 a_2 \dots a_n \mid a_i \in S\}.$$

This is an ideal of S. If S is a monoid then $S^n = S$ for all n, since for any $s \in S$ we can write

$$s = s \underbrace{11 \dots 1}_{n-1} \in S^n.$$

(5) If S has a zero 0, then {0} (usually written 0), is an ideal.

Definition 4.3. Let S be a semigroup.

- We say that S is simple if S is the only ideal.
- (2) If S has a zero 0, then S is 0-simple if S and {0} are the only ideals and S² ≠ 0.

Note that S^2 is always an ideal, so the condition $S^2 \neq 0$ is only required to exclude the 2-element null semigroup. A null semigroup is a semigroup with zero such that every product equals 0 - notice that every subset containing 0 is an ideal.