as ρ is a congruence we have $ab \ \rho \ a'b'$ and hence [ab] = [a'b']. Hence our operation is well-defined. Let $[a], [b], [c] \in S/\rho$ then we have

$$[a]([b][c]) = [a][bc],$$

 $= [a(bc)],$
 $= [(ab)c],$
 $= [ab][c],$
 $= ([a][b])[c].$

If S is a monoid, then so is S/ρ because we have

$$[1][a] = [1a] = [a] = [a][1]$$

for any $a \in S$. Hence we conclude that S/ρ is a semigroup and if S is a monoid, then so is S/ρ .

Definition 3.7. We call S/ρ the factor semigroup (or monoid) of S by ρ .

Now, define $\nu_{\rho}: S \to S/\rho$ by

$$s\nu_{\rho} = [s].$$

Then we have

$$s\nu_{\rho}t\nu_{\rho} = [s][t]$$
 definition of ν_{ρ} ,
 $= [st]$ definition of multiplication in S/ρ ,
 $= (st)\nu_{\rho}$ definition of ν_{ρ} .

Hence ν_{ρ} is a semigroup morphism. Moreover if S is a monoid then $1\nu_{\rho} = [1]$, so that ν_{ρ} is a monoid morphism. We now want to examine the kernel of ν_{ρ} :

$$s \ker \nu_{\rho} t \Leftrightarrow s\nu_{\rho} = t\nu_{\rho}$$
 definition of $\ker \nu_{\rho}$,
 $\Leftrightarrow [s] = [t]$ definition of ν_{ρ} ,
 $\Leftrightarrow s \rho t$ definition of ρ .

Therefore $\rho = \ker \nu_{\rho}$ and so every congruence is the kernel of a morphism.

Theorem 3.8. [The Fundamental Theorem of Morphisms for Semigroups] Let $\theta \colon S \to T$ be a semigroup morphism. Then $\ker \theta$ is a congruence on S, $\operatorname{Im} \theta$ is a subsemigroup of T and $S/\ker \theta \cong \operatorname{Im} \theta$.

Proof. Define $\bar{\theta}$: $S/\ker\theta \to \operatorname{Im}\theta$ by $[a]\bar{\theta} = a\theta$. We have