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dJ=1 (mod2),
=4 (mod3)

If (= (mod2)) U (= (mod3)) were to be transitive then we would have
(3,1) € { = (mod2)) U ( = (mod 3))

(1,4) € (= (mod2)) U ( = (mod .‘i]}}

= (3,4) € (= (mod 2)) U ( = (mod 3))

=Jd=4 (mod2) or 3=4 (mod 3)

but this is a contradiction!

3.3, Kernels
DErFINITION 3.3, Let a: X < Y be a map. Define a relation ker o on X by the rule

a ker o b & aoe = by,
We call ker o the kernel of o,

We may sometimes write a =, b, It is clear that ker o is an equivalence relation on X,
The ker ov classes partition X into disjoint subsets; a, b lie in the same class iff ao = bov,

ExamrLe 3.4, Let a: § - 4 where
s 1 23 45 6
wint ' R IFE K ) &
In this case the different ker n-classes are {1,3},{2,4,5}, {6}.

Note that if «: A = B is a map then o is one-one if and only if kera = ¢4 and o is
constant if and only if ker o = wy.

DeErFINITION 3.5, An equivalence relation p on a semigroup S is a congruence if

(apband e pd) = acpbd

Lemma 3.6 (The Kernel Lemma). Let #: 5 <= T be a semigroup morphism. Then ker 8
15 a congruence on S.

Proof. We know ker # is an equivalence relation on S. Suppose a, b, ¢, d € § with

(a ker @ b) and (¢ ker @ o).
Then afl = b} and efl = df, so

(ac)f = afchl = bdf = (bd)0.
Therefore ac ker @ bd, so that ker # is a congruence, (]
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NoTE. Some remarks on the notion well-defined: usually we define a map on a set by
simply stating what the image of the individual elements should be, e.g:

oe: M — Z, na = the number of 9's less the number of 2's in the decimal form of n.

But very often in mathematics, the set on which we would like to define the map is a set
of classes of an equivalence relation (that is, the factor set of the relation). In such cases,
we usually define the map by using the elements of the equivalence classes (for usually we
can use some operations on them). For example let

p={(n,m)n=m (mod 4)} C N x N.
Then p is an equivalence relation having the following 4 classes:
A=1{1,5913,...},B={2,6,10,14,...},
Cc=1{3171115,...},D={4,8,1218,...}.
Thus, the factor set of pis X = {A, B,C, D}. We try do define a map from X to N by
a: X = N, [n],0=2"

What is the image of A under a7 We choose an element n of A (that is, we represent A
as [n,): 1 € A, thus A = [1],. So Aa = [1,a = 2. However, 5 € A, too! So we have
Aa = [5],0 = 2° = 32. Thus, Ao has more than one values. We refer to this situation as
‘o being not well-defined’.

Keep in mind that whenever we try to define something (a map, or an operation) on a
factor set of an equivalence relation by referring to ELEMENTS of the equivalence classes,
it MUST be checked, that the choice of the elements of the equivalence classes does not
influence the result.

For example in the above-mentioned example let

g: X = N°, [n].8 =T,

where T denotes the remainder of n on division by 4 (that is, 0,1, 2 or 3). In this case J is
well-defined, because all elements in the same class have the same remainder, for example

Ag=[1,l8=1=[§],8=[9],8=...

e /11

The following construction and lemmas might be familiar...

Let p be a congruence on 5. Then we define

S/p={[a]| a € S}.

Define a binary operation on S/p by

[a][b] = [ab].
We need to make sure that this is a well-defined operation, that is, that the product [a|[b]
does not depend on the choice of a and b, If [a] = [a'] and [b] = [I/] then a pa’ and b p V/;

LY
..
LY
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as p is a congruence we have ab p a'tl and hence [ab] = [a't'|. Hence our operation is
well-defined. Let [a], [b], [¢] € S/p then we have

[a] ([B][e]) = [a] [be],
= [a(be)],

= [(ab)e].
= lab|[c],

= ([a][b]) [e].

If S is a monoid, then so is S/p because we have

[1][a] = [1a] = [a] = [al] = [a][1] 0. [ WV

for any a € §. Hence we conclude that S/p is a semigroup and if § is a monoid, then so
is S/p.

DerFiNiTioN 3.7. We call S/p the factor semigroup (or monoid) of S by p.
Now, define v, : § = §/p by

sv, = [s].
Then we have
sugty, = [s|[t] definition of v,
= [st] definition of multiplication in S/p,
= (st)y, definition of v,.

Hence v, is a semigroup morphism. Moreover if S is a monoid then 1, = [1], so that v,
is a monoid morphism. We now want to examine the kernel of v

s ker v, t & sv, =ty definition of ker v,
& [s] = [t] definition of v,
st definition of p.

Therefore p = ker v, and so every congruence is the kernel of a morphism.

Theorem 3.8. [The Fundamental Theorem of Morphisms for Semigroups| Let 6: § —+ T

be a semigroup morphism. Then ker @ is a congruence on 8, Im @ is a subsemigroup of T
and S/ ker 8 = Im 6.

Proof. Define 8: S/ ker @ — Im# by [a]f = afl. We have
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l[a] = [b] < a ker @ b
& afl = b
& [a)6 = [b]6.

Hence # is well-defined and one-one. For any o € Im# we have = = af = [a]f and so 8 is
onto, Finally,

(la][8])0 = [abl® = (ab)d = afbf = [a]0[b]0.
Therefore # is an isomorphism and S/ ker @ = Im@. O

Note that the analogue of Theorem 3.8 holds for monoid to give us the The Fundamental
Theorem of Morphisms for Monoids.

EXAMPLE 3.9, #: B = (Z, +) given by (a,b)f = a — b is a monoid morphism. Check that
f is onto, so by FTH we have

B/kerf = Z.
Moreover, ker # is the congruence given by

(a,b) ker@ (e, d) S a-b=¢c~—d.

4. IDEALS

Ideals play an important role in Semigroup Theory, but rather different to that they hold
in Ring Theory. The reason is that in case of rings, ALL homomorphisms are determined
by ideals, but in case of semigroups, only some are.

4.1. Notation
If A, B C S then we write

AB = {ab|a € Ab e B},
A* = AA = {ab| a,b € A)}.
NOTE. A is a subsemigronp if and only if A # @ and A* C A

We write a8 for {a}B = {ab | b€ B}.
For example

AaB = {zay | r € A,y € B}.
Facts:
(1) A(BC) = (AB)C therefore P(S) = {5 | A C S}, equipped by the above-defined

operation, is a semigroup ~ the power semigroup of S.

(2) ACB= ACC BC and CAC CB for all A, B,C € P(S).
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(3) AC = BC # A= Band CA =CB # A = B, ie. the power semigroup is
not cancellative - think of a right zero semigroup, there AC' = BC' = C for all
ABCCS.

(4) A is isomorphic to the subsemigroup {{a} | a € A} of P(A).

(5) §'S = § = S8,

DEFINITION 4.1, Let 1 # 1 € S then [ is
(1) aleft ideal i STC I (ie.a€l,s €8 =>sa€l);
(2) a right ideal if IS C [T,
(3) an (two-sided) ideal if 15U ST C I, that is, [ is both a left and a right ideal.

Note that if S is commutative, (1),(2) and (3) above coincide,

If @18 then we have:

! is a left ideal « S'1 C I 0. /4
I is a right ideal & IS' C I

{ is an ideal « S'/S' C [,

Note that any (left /right) ideal is a subsemigroup,

L1 L]
L1 1]

EXAMPLE 4.2, (1) Let ¢ € I then {i} x J is a right ideal in a rectangular band § x J.

(2) Let m € N” be fixed, Then £, = {(x,y) | ® 2 m,y € N"} is a right ideal in the
bicyclic semigroup B.
Indeed, let (x,y) € Iy, and let (a,b) € B, Then

(z,y)a,b) =(x -y +1,b-a+t),

where ¢ = max{y,a}. Now, we know that # > m and that ¢ > y, so t =y > 0.
Adding up these two inequalities, we get that @ =y + ¢ > m, thus the product is
indeed in 1.

(3) If Y C X then we have {« € Ty [ Ima C Y} is a left ideal of Ty.

(4) For any n € N we define

S" ={ayny...0a, | a; € S}.
This is an ideal of 5. If S is a monoid then 5" = S for all n, since for any s € S
we can write

s=gll...1 € 5"

fi=1
(5) If § has a zero 0, then {0} (usually written 0), is an ideal.
DEFINITION 4.3, Let S be a semigroup.

(1) We say that S is simple if S is the only ideal.
(2) If S has a zero 0, then S is O-simple if S and {0} arve the only ideals and S? # 0.

Note that 8% is always an ideal, so the condition S* # 0 is only required to exclude the 2-
element null semigroup. A null semigroup ts a semigroup with zero such that every product
equals 0 - notice that every subset containing 0 is an ideal,
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EXAMPLE 4.4, Let ¢ be a group and [ a left ideal. Let g € 7, a € I then we have

g=(gaael
and so ¢ = [, Therefore ¢ has no proper left/right ideals. Hence 7 is simple.
Exercise: (" is O-simple

ExaMpLE 4.5. We have (N, +) is a semigroup. Let n € N. Now define [, € (N, 4) to be

Li={nn+1n+2...}
which is an ideal. Hence N is not simple.

NoTE. {2,4,6,...} is a subsemigroup but not an ideal,
ExAMPLE 4.6. The bicyelic semigroup B8 is simple.

Proof. Let I C B be an ideal, say (m,n) € I. Then (0,n) = (0,m)(m,n) € 1. Thus
(0,0) = (0,n)(n,0) € I. Let (a,b) € B. Then

(aa,b) = (a,b)(0,0) € [
and hence B = [ = B is simple. O

4.2. Principal Ideals

We make note of how the S' notation can be used. For example

S'A={sa|s €8 ac A},
= {sa|seSU{l},ae A},
={sn|s€Sae A}uU{la|aec A},
= SAUA.
In particular, if A = {a} then S'a = SaU {a}. So,

S'a = Sa & a € Sa,
S a=la

for some t € S. We have S'a = Sa fora € § if:

e Sis a monoid (then a = la).
e a & E(S) (then a = aa).
e a is regular, i.e. there exists & € S with a = axra (then a = (ax)a).

But in (M, +) we have 1 ¢ 1 + N. Dually,

as' =aSU{a}
and similarly
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5'aS' = SaS U aS U SauU {a).
Cram. aS' (8'a, 5'aS") is the “smallest” right (left, two-sided ideal) containing a.

Proof. (for aS?).
We have a = al € aS" and (aS5')S = a(S5'S) € aS'. So, aS" is a right ideal containing a.
If a € I and [ is a right ideal, then aS' C [S'=TUISC I. O

DEFINITION 4.7. We call aS' (S'a, S'aS") the principal right (left, two-sided) ideal gen-
erated by a.

If S is commutative then aS' = §'a = §'aS".
ExAMPLE 4.8, In a group ¢ we have
aG! =G = Gla = G'aG!
for all a € G.
ExampLE 4.9. In M under addition we have

n+ ‘N =L ={nn+1,n+2,...}
ExampLe 4.10. B is simple, so

B(m,n)B = B'(m,n)B' = B
for all (m,n) € B. However:
CLAIM. (m,n)B = (m,n)B" = {(z,y) | 2 m,y € N}
Proof. We have

(m,n)B = {(m,n)(u,v) | (u,v) € B}
C {(z,y) |z zmye N}
Let ® = m then

(myn)(n+(x—m),y) = (m-n+n+(z-m)y),
= (x,y).
Therefore (z,y) € (m,n)B = {(z,y) | * 2 m,y € N°} C (m,n)B. Hence we have proved
our claim. O
Dually we have B(m,n) = {{;r_. y)|lze Ny 2 n}.

Lemma 4.11 (Principal Left Ideal Lemma). The following statements are equivalent;
i) S'a C S'b,
ii) a € S,
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iii) @ = th for some t € §',
iv) a=b ara=th for somet € S.
NoTE. If S'a = Sa and §'b = 5§b, then the Lemma can be adjusted accordingly.
Proof. It is clear that (ii), (iii) and (iv) are equivalent.
(i) = (ii): If S'a C S'bthen a = la € S'a C S'b = a € S'b.

(ii) =+ (i): If @ € S, then as S'a is the smallest left ideal containing a, and as ' is a
left ideal we have Sta C S'b. O

Lemma 4.12 (Principal Right Ideal Lemma). The following statements are equivalent:
i) aS' C bS!,
ii) a € bS!,

iii) @ = bt for somet € 8§,

ivla=bora=>W for somet € 8.

NoTE. If aS = aS" and bS = bS' then aS CbS = a € bS <« a = bt for some t € S.

The following relation is crucial in semigroup theory.

DeErmNiTION 4.13. The relation £ on a semigroup S is defined by the rule

albe Sla= S
for any a,.b € S.

NoTE.

(1) L is an equivalence.

(2) If a £ b and ¢ € S then S'a = S'b, so S'ac = S'be and hence ac £ be, ie. L is
right compatible. We call a right (left) compatible equivalence relation a right (left)
congruence. Thus L is a right congruence.

Corollary 4.14. We have that

albe st € 8! witha = sb and b = ta.

Proof.
albe Sla= S
= Slag C 8% and S'b C S'a
& Js.t€ S witha=sb,b=ta
by the Principal Left Ideal Lemma. O
We note that this statement about £ can be used as a definition of L.

REMARK.
(1) a L b« a=bor there exist s,t € § with a = sb, b = ta.
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(2) If Sa = S'a and Sb = S'b, then a £ b4 Is,t € § with a = sb, b = ta.

Dually, the relation R is defined on S by

aRbe asS' = b8!

and

aRberIs,t €8 witha=bs and b = at,
&a=bhor st € 5 with a = bs and b = at.

We can adjust this if a8 = a8 as before. Now R is an equivalence; it is left compatible
and hence a left congruence.

DEFINITION 4.15. We define the relation 4 = £ 1R and note that H is an equivalence,

The relations £, R, H are in fact three of the so-called Greens' relations,

EXAMPLE 4.16. (1) If § is commutative, £ =R = H.
(2) In a group G,

Gla=G=0CG" and aG'=G=bG" forallabe .

Soa L bandaRbforall a, b€ G, Therefore £ =R = w = G x (7 and hence
we have H = w.

ExavmprLE 4.17. In N under + we have

a+N' ={a,a+1,...} ﬂ-[‘i“f’ -
L} ]
andsoa+MN' =b+N'ea=b Hance L=R=H = 1.

ExamprLE 4.18. In B we know

(m,n)B' = {(x,y) | * 2 m,y € N}
and so we have

(m,n)B" = (p,q)B" & m = p.
Hence (m,n) R (p, q) < m = p. Dually,

(m,n) L (p,q) & n=q.
Thus (m,n) H (p,q) & (m,n) = (p, q), which gives us H = ..
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4.3. £ and R in Ty

CrLAaM. aTy C 0Tx < ker 3 C ker o,
(Recall ker o = {(z,y) € X x X | za = yar }).

Proof. (=) Suppose aTy C ATy. Then a = 3+ for some v € Ty. Let (z,y) € ker 3. Then

za = x(f3v) = (zB)y = (yB)y = ¥(By) = ya.
Hence (x, y) € kerar and so ker 3 C ker o,
(¢=) Suppose ker 3 C ker . Define 4: X — X by

s & : z¢Img
”T_{;m z =2z

If z =23 =yp, then (x,y) € ker 3 C ker & s0 xax = yor. Hence v is well-defined. So v € Ty
and Gy = a, Therefore o € 3Ty so that by the Principal Ideal Lemma, a7y C 8Ty, O

Corollary 4.19 (R-Tx-Lemma). a R 3 ¢ kerav = ker 4,
Proof. We have

aR B aTlx =0Tk 0- / Yt
& aTy C ATy and 3Ty C aTy
& ker 3 C ker ov and ker o C ker 4
& ker oo = ker 3.

FacT: Tya C Ty & lma C Im 7 (See Exercises).
Corollary 4.20 (£ — Tx-Lemma), o £ 7 & Ima =lm 4.
Consequently o ‘H 7 & ker a = ker § and Ima = Im 3,

ExAampLE 4.21. Let us define

(32 erm
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Now we have Ime = {2,3}. We can see that ker ¢ has classes {1,2},{3}. So

aHeeIma=Imes and ker oo = kere
& Ima = {2,3} and ker o has classes {1,2}, {3}.

So we have

E|E &

which is the table of a 2-element group. Thus the H-class of = is a group.

5. SUBGROUPS OF SEMIGROUPS

Let S be a semigroup and let H € 5. Then H is a subgroup of S if it is a group under the
restriction of the binary operation on S to H; i.e.

eabe H=abe H
e dee Hwithea=a=aeforallae H
eVae Hibe Hwithab=¢ =ba

REMARK.

(1) § does not have to be a monoid. Even if § s a monoid, e does no 5 Yo
However, ¢ must be an idempotent, i.e, ¢ € E(5). ) /
(2) If H is a subgroup with identity e, then e is the enly idempotent in ..

FIGURE 2. ¢ is the only idempotent in H.

(3) If e € E(S), then {e} is a trivial subgroup.

(4) With o = (; i g) and € = (; g g) we have the H-class {¢,a} is a subgroup

of Ts.
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(5) Sy is a subgroup of Ty. Notice

a H Iy & Ima =Imly and ker o = ker [y,
< Ima= X and kera =,
<« is onto and o is one-one,
& a € Sy.
Therefore Sy is the H-class of 1.

DerFintTION 5.1, In the sequel, we are going to denote by L, the L-class of a; by R, the
R-class of a and by H, the H-class of a.

Now L, =Ly a Lband H, = L,NR,. For example, in B, we have Ly 5 = {{.5,3} |
x € N0},
We are going to show that the mazimal subgroups of semigroups are just the H-classes of

idempotents. As a consequence, we will see that whenever two subgroups are not disjoint,
then they are both contained within a subgroup, as the following figure shows.

Fioure 3. Existence of a Maximal Subgroup. -

o /Y1 .o
..
Lemma 5.2 (Principal Ideal for Idempotents), Leta € S, e € E(S). Then
(i) S'laC S'e s ae=a
(i) aS' C eS' & ea = a.
Proof. (We prove part (i) only because (i) is dual). If ae = a, then a € S'e so §'a € S'e
by the Principal Ideal Lemma. Conversely, if S'a € S'e then by the Principal Ideal Lemma
we have a = te for some t € S'. Then

ae = (te)e = t(ee) = te = a.
Corollary 5.3. Let e € E(S). Then we have
ale=sea=a,

ale=ae=a,
aHe=a=ae=ea.
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Thus, idempotents are left/right /two-sided identities for their R/LC/H-classes.

Lemma 5.4, Let ¢ be a subgroup with idempotent e, Then G C H,, thus, the elements of

G are all H-related,

Proof. Let G be a subgroup with idempotent e. Then for any a € & we have ea = a = ae
and there exists a~' €  with aa™! = ¢ = a~'a, Then

£i =
y =saRe

aa " =g
ae = a
P =ale
i 'n=r¢e
=aHe
Therefore a H e forall @ € &, 50 G C H,. O

Theorem 5.5 (Maximal Subgroup Theorem). Let ¢ € E(S). Then H, s the mazimal
subgroup of 8 with identity e,

Proof. We have shown that if & is a subgroup with identity e, then ¢ C H,.

We show now that H, itsell is a subgroup with identity e,

We know that e is an identity for H.. Suppose a, b € .. Then b H e, so b R e hence
b Roae (R is left compatible) so

ab Rae =aRe.

Also, a Le = ab L eb=DbL e hence ab 'H ¢ so ab € H,. It remains to show that for all
it € H, there exists b € H, with ab = ¢ = ba.

Let a € H,. Then, by definition of H = RN L, there exist s, f € ' with

il =e= 80,
ale ale O { \."V
We have
alete) = (ne)le = ale = ee = ¢ =+« - = (pae)a,

Let 2 =ple, y =ese 80 2,9 € 5 and ex = xe =x, ey = ye =y, Also ¢ = ar = ya, Now

r=er = (ya)r = ylar) = ye = y.
So let b =2 = y. Then

ch=b ba=¢ be=b ab=¢
\_.V._-f 1|I||_\',..—-|‘
WRw hile
so bH e, thus b € H,. Hence H, is indeed a subgroup. O
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Let e, f € E(S) with e # f. Since H, and Hy are subgroups containing the idempotents e
and f, respectively, H. # H;. This implies that H. N Hy = 0.

Theorem 5.6. [Green's Theorem| Ifa € S, then a lies in a subgroup iff a H a®.
Proof. See later. O

Corollary 5.7. Let a € 5. Then the following are equivalent:

(i) a lies in a subgroup,

(i) a H e, for some e € E(S),

(iii) Hy is a subgroup,

(iv) a H a®.
Proof. (i) = (ii): If a € G, then G C H, where ¢* = e is the identity for . Therefore
a € H,s0aHe.
(ii) = (iii): If @ H e, then H, = H, and by the MST, H, is a subgroup.
(iii) = (i): Straightforward, for a € H,.

(iii) = (iv) If H, is a subgroup, then certainly H, is closed. Hence a,a® € H, therefore
aH a’.

(iv) = (i) This follows from Greeen's Theorem (Theorem 5.6).

Subgroups of T,

We use Green's Theorem to show the following.

Lemma 5.8. Let o« € T,,. Then a lies in a subgroup of T,, < the map diagram has no tails
of length = 2.

Proof. We have that

a lies in a subgroup < o Mo’
& alaot,aRa®
< Ima =Imao? kera = kero®.

0 / YA

We know Ima? C Ima (as T,a® C T,a). Let p be an equivalence on a set X. Recall

X/p={la] | x € X}

We have seen that

|/ ker | = | Ima.

We know that ker a C kera? (o7, C aTy), which means that the ker a’-classes are just
unions of ker o-classes:

CramM. For o € T, Ima = Im o? & ker a = ker o®.
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— ker o classes

veenes KT 062 classes

FIGURE 4. The classes of ker v and ker o®.

Proof.

|/ ker 0| = |Imo?| < |Ima| = o/ keral.
Thus ker o and ker o have the same number of classes if and only if [Ima| = [Ima®|. It
follows that ker o = ker o if and only if Ima = Ima?. O

We now continue with the proof of Lemma 5.8:

We have that o lies in a subgroup < Ima = Ima?. Note that elements of Ima '\ Ima?
are exactly those second vertices of tails in the map diagram of & which are not members
of a eycle. Thus, Ima? = Ima if and only if no such vertices exist, thus if and only if all
tails have length smaller than or equal to 1. O

An arbitrary element of T, looks like:

lﬂ—Iﬂ'

——-e]

€ Ima \ Ima?*

ExamprLE 5.9.
(1) We take an element of 7; to be

4 5

=]
Il
V.
=
=

This has map diagram
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Now o has a tail with length = 2 and therefore o doesn't lie in any subgroup.
(2) Let us take the constant element ¢ € T

{12345
2 =11y
This has the following map diagram
1
2 3 1 D

Now ¢; has no tails of length = 2, therefore ¢; lies in a subgroup and hence ey lies
in a subgroup, Note that actually ¢f = ¢.

Now for any 4,

BeH, & 8Ha,
& ARe and 8 L ey,
& ker 4 = kerey and Im 3 = lmey,
¢ ker 3 has classes {1,2,3,4,5) and Im g3 = {1},
o f=q.

Therefore the maximal subgroup containing ¢, is H,, = {¢}.
(3) Take the element

ﬂ-f'F"-

This has map diagram
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No tails of length = 2. Therefore o lies in a subgroup. Hence a lies in a maximal
subgroup. Hence the maximal subgroup containing o is ‘H,. For any g

ﬁ E H.r_'. — JS H ﬂ1
& ARaand 3 La,
& ker  =kera and Im 3 = Ima,
& ImJ3={23,5} and ker 3 has classes {1, 3}, {2,4}, {5}.
We now figure out what the elements of H, are. We start with the idempotent.

We know that the image of the idempotent is {2, 3,5} and that idempotents are
identities on their images. Thus we must have

{12345

N 2 3 5/
We also know that 1 and 3 go to the same place and 2 and 4 go to the same place.
Thus we must have

(12345

“\3 23 125)

We now have what the idempotent is and then the other elements of H,, are (note
that 1 and 3 must have the same images, just as 2 and 4):

o,
=
b2 kS
DMl e e
o ol B o GO b
2 o
Nt
A~
N oE= DN e
CELI =
\""l-i-.-'"

-
\""l-i-.-'"

These are all 6 elements.

Ch{\ck H“ = S;{.-
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6. D, J AND GREEN'S LEMMAS
Recall §'asS! = {ray | x,y € S'}.

DerFNiTION 6.1. We say that a J b if and only if

aJbe §'as! = §'h5!

Check:
aJbe s, tu,ve S witha =sbt b= uav.

NoTE. If a £ b, then S'a = S'bso S'aS' = §'68" soa T b, ie. LC J, dually R C 7.

Recall: S is simple if S is the only ideal of §. If S is simple and a, b € S then

§af =8=8b8 soaJ b
and 7 = w (the universal relation). Conversely if 7 = w and [ is an ideal of S, then pick
any a € [ and any s € S. We have
se 88 =8a8' C I

Therefore I = 5 and S is simple.

We have shown that that
S is simple & J =w.

Similarly if S has a zero, then {0} and S\ {0} are the only -classes iff {0} and S are the
only ideals.

6.1. Composition of Relations
DeErFiniTION 6.2. If p and A are relations on A we define

por={(r,y) € Ax A|3Iz € A with (r,2) € pand (z,y) € A}.

Lemma 6.3. If p. A are equivalence relations and if poX = Aop then po) is an equivalence
relation. Also, it is the smallest equivalence relation containing plUJ A,
Proof. Put v =poA=Aop

e foranya € A apa A asoawraand v is reflexive. G-[‘r“‘r’
& Symmetric - an exercise.
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e Suppose that a v by e then there exists r, y € A with

aprAblype.

(Note that first we use that ¥ = po A, and next we use that v = Ao p.)
From = A b A y we have = A y, so

aprAype.
Therefore x v ¢ hence there exists = € A such that x p = A ¢, therefore a p 2 A ¢
and hence a v ¢, Therefore v is transitive,
We have shown that v is an equivalence relation. If (a,b) € p then a p b A bso (a,b) € v.
Similarly if (a,b) € A then a pa A bso (a,b) € v. Henee pU A C v

Now, suppose plU A C 7 where 7 is an equivalence relation. Let (a,b) € v. Then we have
i peAbfor some ¢, Henee a7 er bsoar basris transitive. Therefore v € 7. O

The smallest equivalence relation containing any p and A is denoted by p v A; we have
shown that if p and A commute, then pv A = po A,

DEFINITION 64, D=RoLl,ie.aDber Je€ SwithaReLl b
Lemma 6.5 (The D Lemma). RoL=LoR

Proof. We prove that R o £ € Lo R, the proof of the other direction being dual. Suppose
that a R o L b, Then there exists ¢ € S with

aRclh
There exists u, v, s, ¢ € S with

a=rcu =y c=sb bh=tc
(1) (2) {3) {4)

Put o = bu then we have

= cu = shu = sd,
{1 (3)

d=bu = tcu = ta,
(4) (1)

Therefore a £ d. Also

b= te = tar = tenr = bur = dv.
{4} (2) () [4)

Therefore bR d and hence a £ o R b (m}

Hence D is an equivalence relation and D = £V R.
By definition

0./ YY
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H=LNRCLCD,
H=LNRCRCD.
As 7 is an equivalence relation and LUR € 7 we must have D C 7. This has Hasse

Diagram

J

H

NotaTion: D, is the D class of a € § and J, is the J-class of n € §.
Note. H,C L, €D, C J, and also H, C R, C D, C J,.

Egg-Box Pictures

Let D be a D-class. Then for any @« € D we have R, C D = D,, and L, C D. We
denote the R-classes as rows and the C-classes as columns. The cells (if non-empty) will
be ‘H-classes - we show they are all non-empty!

Let w,v € D then u P v. This implies that there exists h € S with u R h £ v, so0
R, N L, # 0, that is, no cell is empty. Moreover

R.NnL,=Ryn Ly = Hy.

As D is an equivalence, S is the union of such “egg-boxes”: the rows represent the R-
classes, and the columns represent the L-classes.

i

h

G.2. Structure of D-classes

Let S be a semigroup, s € S§'. We define p, :

S Sbhvap,=asforallae S

Lemma 6.6 (Green's Lemma). Let a,b € S be such that a R b and let 5,8 € S be such

that

s = b fLHf.! b#r = 4.

0 f ¥e .
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Then py : Ly = Ly and py ¢ Ly = L, are mutually inverse, R-class preserving bijections

(ie. if c € Ly, then ¢ R cp, and if d € Ly then d R dpy ).
Proof. If ¢ € L, then

ep, =cs Las=b,
because £ is a right congruence. So ep, £ b therefore p, : L, = Ly. Dually py : Ly = L,.
Let ¢ € L,. Then ¢ = ta for some t € S. Now

CPuPy = taSpy = tass' = ths' = ta = c.
So peps = I1,, dually, pep, = I1,.

Again, let ¢ € L,. Then

8 =0C+8,

Therefore ¢ R es = ep,. O

Continuing Lemma 6.6. For any ¢ € L, we have p, : H. = H,, is a bijection with
inverse py : H., — H.. In particular - put ¢ = a then

p,: H, = H, and p, . Hy— H,
are mutually inverse bijections.

Let s € §'. Then we define A, : § — S by a), = sa.

Lemma 6.7 (Dual of Green's Lemma), Let a, b € S be such that a £ b and let t,t' € S
be such that ta = b and t'bh = a. Then A, : R, = R, and )y : R, = R, are mutually
inverse L-class preserving bijections, In particular, for any ¢ € R, we have A, : H, = H,,,
Av ¢+ Hye — H. are mutually inverse bijections. So, if ¢ = a we have X, : Hy, — H,,
Av : Hy = H, are mutually inverse bijections.

Corollary 6.8. If a D b then there exists a bijection H, — H,.

Proof. If a D b then there exists h € § with a R h £ b. There exists a bijection H, — H,
by Green's Lemma and we also have that there exists a bijection Hy, — Hy by the Dual of
Green's Lemma. Therefore there exists a bijection H, — H,,. O

Thus any two H-classes in the same D-class have the same cardinality (just like any two
R- and L-classes).

Theorem 6.9 (Green's Theorem — Strong Version). Let H be an H-class o’
S. Then either H* N H =0 or H is a subgroup of S. 0. / Yo
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Proof. We prove that if H*N H # 0, then H is a subgroup. This is exactly the statement
of the theorem.

So suppose H*N H # 0. Then there exists a,b,c € H such that ab = ¢. Since a R ¢,
m: H, = H.is a bijection. But H, = H, = H so p, : H — H is a bijection. Hence
Hb= H. Dually, aH = H.

Let u,v € H. Then av € H so that as above, Hv = H. But then uwv € H and H is a
subsemigroup. Further, vH = H so that by a standard argument (see Exercises 1), H isa
subgroup of S.

Alternatively Since be H, b = db for some d € H. As bR d, d = bs for some s € S' and
then d = bs = dbs = d®. Hence H contains an idempotent, so (by the Maximal Subgroup
Theorem) it is a subgroup. O

Corollary 6.10. a H o* & H, is a subgroup.

Proof. We know H, is a subgroup = a,a® € H, so aH a’.
Conversely, if aHa?®, then a* € H,N(H,)*. Hence H,N(H,)* £ 0. So, by Green's Lemma,
H, is a subgroup. O

7. REES MATRIX SEMIGROUPS

Just as the main building blocks of groups are simple groups, the main building blocks of
semigroups are O-simple semigroups.

In general, the structure of O-simple semigroups is very complicated. In the finite case and.
more generally, in case certain chain conditions hold, their structure is transparent - they
can be described by a group and a matrix.

Construction: Let (G be a group, let I. A be non-empty sets and let P be a A x | matrix
over G U {0} such that every row and every column of P contains at least one non-zero
entry.

MO = M%(G; I, A; P) is the set

I xGxAu{0}
with binary operation given by On = 0 = n0 for all n € M" and

0 if M = 0,
(1, apab, p) if py # 0.
Check that M"(G: I, A: P) is a semigroup with zero 0.

(.. A)(k.b, u) = {

DEFINITION T.1. M" = M%G: I, A; P) is called a Rees Matrix Semigroup over

0« / ¥1
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DerFNiTION 7.2, a € S is reqular if there exists x € S with

a = ara,
S is regular if every a € S is regular.

If S is regular then a R b &< a8 = bS < there exists s,t € S with a = bs and b = at, ete.

Proposition 7.3. Rees matrix facts Let M" = M"(G; 1, A; P) be a Rees Matriz Semi-
group over a group .

(1) (i,a,A) is idempotent < pyi # 0 and a = py.

(2) M" is regular.

(3) (i,a, \) R (j.b,p) & i=].

(4) (10, \) £ (b, 1) > A = .

(5) (i,a,A\) H (3;bp) =i =j and X = p.

(6) The D = T -classes are {0} and M"\ {0} (so0 0 and M" are the only ideals).
(7) M is 0-simple.

(8) The so-called rectangular property:

wwPreyRe v M
Dy ay Ly nHy €

Proof. (1) We have that

(i,a, A) € E(M") & (i,a,\) = (i,a,A)(i, a, ),
@ pai # 0,(i,a,A) = (i,apya, M),
& pai 7 0,a = apya,
& pyi#0and py =a.

(2) 0 = 000 so 0 is vegular. Let (i,a, A) € M\ {0} then there exists j € I with py; # 0
and there exists y € A with p,; # 0. Now,

(i,a, Ajl:_j_.;gi"u'lp;il, u)(i,a, A) = (i,a,A)
and hence MY is regular,
(3) {0} is an R-class. If (i,a, A) R (j, b, ) then there exists (k, ¢, v) € M with

(i,a,A) = (4. b, p)(k,e,v) = (J, bpyae, v)
and so i = j. Conversely, if i = j, pick k with p, # 0. Then

(i, A) = (i, by ) (k, b, A)
and together with the dual we have (i,a, A) R (j, b, u)
(4) Dual.
(5) This comes from (3) and (4) above,

0./ YV .e
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6) {0} is a D-class and a J-class. If (i.a, A). (5.b. ) € M® then
(6) {0} ca,A), (7, b,

(i,a,A) R (i,a,pu) £ (5,b, )
so (i,a,A) D (j,b, u) and so (i,a,A) T (j,b,u). Therefore D = 7 and {0} and
M {0} are the only classes.

(7) We have already shown that the only J-classes are {0} and M®\ {0}. Let i e I,
then there exists A € A with py; # 0so (i,1, A)? # 0. Therefore (M")? # 0 and so
M is O-simple.

(8) If zy R x, then clearly ry D x, because & C D. For the other direction, suppose
that ry D x. Notice that the two D-classes are zero and everything else. If zy =0,
then necessarily = 00, because Dy = {0}. If zy # 0, then necessarily =,y # 0, so
we have that

z = (i,a,A) y = (7, b, p).
Then zy = (i,apab, p), so xy R x. The result for £ is dual. O

Some more facts!

(9) Put Hiy = {(i,a, ) | a € G}. By (5) we have H;, is an H-class (Hiy = Hien). If
Py # 0 we know (i, p7!, A) is an idempotent and so Hj, is a group, by the Maximal
Subgroup Theorem. The identity is (i, py!, A) and (i,a, A)™" = (i,p3'a™', pit, A).

(10) If pai # 0 and p,; # 0 then Hy, =~ Hj,. It is clear that (i,a,A) — (j,a,pu) is a
bijection, but this is not in general a morphism. Erercise: find a morphism!

Chain conditions

A

finitary property is a property held by all finite semigroups: chain conditions are one

kind of finitary property.

DEFINITION 7.4. A semigroup S has M, if there are no infinite chains

Lglﬂ:l ::‘ .511‘12 j Slﬂ_& j R

of principal left ideals. Mg is the descending chain condition (d.c.c.) on principal left
ideals.
The left/right dual is M.

Lemma 7.5 (The Chain Lemuna). The semigroup S has M, if and only if any chain

ey 235%2...

terminates (stabilizes) i.e. there erists n € N with

Sla, = S'a,., =...

0. / YA
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Proof. If every chain with 2 terminates, then clearly we cannot have an infinite striet chain

Sla, o> S'az > ...

So S has M.
Conversely, suppose S has M; and we have a chain

Slay 2 S D...
Let the strict inclusions be at the jth steps:

1 1 1 1 1
Say=8ag=:--=5"a;, 2 85a;,41 =504
e _ el 1 i
=...=8a;, 285 a,,,=...
Then
1 1
5%a;, > §%ay, O ...

As S has My, this chain is finite with length n say. Then

1 _ gl .
S'a;, 1 =84a;,42=...

and our sequence has stabilised. U

DerFniTION 7.6. The ascending chain condition (a.c.c.) on principal ideals on left /right
ideals M* (M™®) is defined as above but with the inclusions reversed.

The analogue of the Chain Lemma holds for ME and (M#).

ExAMPLE 7.7. Every finite semigroup has M;, Mgz, ML M®. For example, if

51111 2 Slﬂz - Slﬂ:{ e JH
then in every step, the cardinality of the sets must decrease at least by one, so the length
of a strict sequence cannot be greater than |S|.

ExampPLE 7.8. The Bicyclic semigroup B has M* and M%. We know

Blz,y)={(p.9) | a = v}
and so
B(x,y) C B(u,v) &y 2 v,

and inclusion is strict if and only if y = v. If we had an infinite chain

B(xi,1n) C B(ra,y2) C Blzs,ya) C ...
then we would have

h=mw=m=>...,

which is impossible in M.

Hence M*™ holds, dually M*% holds.

0. /¥4
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Howoever, since 0 < 1 < 2 < ... we have

B(0,0) > B(1,1) 2 B(2,2)>...
s0 there exists infinite descending chains. Hence B does not have My or My.

EXAMPLE 7.9, Let M" = M"(G:I; A; P) be a Rees Matrix Semigroup over a group G.
Then M" has My, My, M* and M*%,

Proof. We show that the length of the strict chains is at most 2. Suppose aM” C FM",
We could have o = 0. If & # 0 then aM"” # {0} so 7 # 0 and we have o = (i, g, A),
3= (j, h, p) and o = 35 for some v = (f, k, ). Then

(i, A) = (s by w) (6 kyw) = (4, hpuek, v).
This gives us that i = j and so a R 7 and aM" = gM".
Summarising, 0MY € aM? for all non-zero o, But if & # 0 and aM” C MY, then
aM? = MY, Hence M" has My and M%; dually M° has M, and M*, O

DEFINITION 7.10. A O-simple semigroup is completely 0-simple if it has Mg and M.

By above, any Rees Matrix Semigroup over a group is completely O-simple. Our aim is to
show that every completely (-simple semigroup is isomorphic to a Rees Matrix Semigroup
over i group.

Theorem 7.11 (The D = 7 Theorem). Suppose

(+)

Then D = 7.

EXAMPLE T7.12.
(1) If S is a band, a = a? for all a € § and so («) holds,
(2) Let S be a semigroup having M, and let a € S. Then
Sla28@*28%*D....

Since S has My, we have that this sequence stabilizes, so there exists n € N such
that §'a" = S'a"*! which means that a" £ a"*'. Similarly, if S has Mg, then for
every a € S there exists m € N such that a™ R a™*!.

Proof. of D = J Theorem
We know D C 7. Let a,b € S with a J b. Then there exists r, y, u, v € S' with

Vae s IneN witha" £ a™*',
VYa € S, Im e N with a™ R a™*'.

b = ray, a = ubv.
Then

b = ray = r(ubv)y = (xu)b(vy) = (xu)*blvy)? = - - - = (zu)"blvy)"
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for all n € N. By (%), there exists n with (zu)" £ (zu)"*'. Therefore

b= (zu)"blvy)" L (xu)"*'blvy)" = J:u({;ru]”b{t-‘y]”} = rub.
Therefore b £ zub, so

S'b = S'rub C S'ub C S'b.
So S'b = S'ub, which means that b £ ub. Dually, b R bv. Therefore a = ubv R ub L b. So
aa Db and J C D. Consequently, D = 7. O

As a consequence we have the following:
Corollary 7.13. [If a semigroup S has My and Mg, then it satisfies () and thus D = T,
In the same vein we have:

Lemma 7.14. The Rectangular Property:
Let 8 satisfy (). Then for all a,b € 8§ we have

(i)aJabe aDabe aR ab,
(ii) b 7 ab e bD ab ¢ b L ab.

Proof. We prove (i), (ii) being dual. Now,

a JabeaDab

as D =7. Clearly if a R ab then a D ab; as R C D.
Conversely, If a 7 ab then there exists z, y € S with

a = raby = ra(by) = x"a(by)"
for all n. Pick n with (by)" R (by)"*'. Then

a=x"a(by)" R a"a(by)"*" = e"a(by)"by = aby.
Now
as' = uby.‘i" C abS' C aS'.
Hence aS* = abS* and a R ab. O

7.1. Completely 0-simple semigroups

Let S have a 0. Recall that § is 0-simple if and only if 0 (properly, {0}) and S are the
only ideals and 52 # 0. If in addition S has Mg and M, then S is completely (-simple.

Lemma 7.15. [0-Simple Lemma/ Let S have a 0 and §* # 0. Then the following are
equivalent!
(i) 5 18 O-simple,
(ii) SaS = 8 for alla € S\ {0},
(ili) S'aS' =5 forallae S\ {0},

0. /&)
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(iv) the J-classes are {0} and S\ {0}.
Proof. (i) & (iii) < (iv) is a standard exercise.
(ii) = (iii): Let a € S\ {0}. Then
S=SaSC SaS'CS
and therefore S = S'aS!.
(i) = (ii): Since 5% # 0 and S? is an ideal, then S? = S. Therefore

5 =588"=585"=8+0.
Let I ={x€ 5| S2S=0}. Clearly 0 € I and hence I # Q. If z € I and s € S, then

0C SzsS§5C 5z5=0.
Therefore SzsS = 0 and so xs € I. Dually sz € I: therefore [ is an ideal. If [ = 5, then

5% = 8IS,
= U SzS,
zEd
= .
This is a contradiction, therefore I # S. Hence I = 0. Let a € S\ {0}. Then SaS is an
ideal and as a € I we have SaS # 0. Hence Sa5 = 5. O

Corollary 7.16. Let S be completely 0-simple. Then S contains a non-zero idempotent.
Proof. Let a € S\ {0}. Then SaS = S, therefore there exists a u, v € § with a = uav. So,

a = uav = wav: = - -- = u"ar"™

for all n. Hence u™ # 0 for all n € M. Pick n,m with " R u™*!, u™ L u™+!. Notice

un+1 R uﬂ+2

as R is a left congruence. Similarly,

un+2 R uﬂ+3
we deduce that u™ R u™*t for all ¢ 2 0. Similarly ¥™ £ u™ for allt = 0. Let 5 =
max{m,n}. Then v* R u*, u* £ u* so u®* H u** = (u*)>. Hence by Corollary 5.7, u* lies
in a subgroup. Therefore u* H e for some idempotent e. As u® # 0 and Hy = {0}, we have
e # 0. O

Theorem 7.17 (Rees’ Theorem - 1941). Let S be a semigroup with zero. Then S is
completely 0-simple < 5 is isomorphic to a Rees Matriz Semigroup over a group.

0. [ LY
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Proof. If 8 2 M"(G: I; A; P) where G is a group, we know M" is completely O-simple (by
Proposition 7.3, Rees Matrix facts and Example 7.9), henee S is completely O-simple.

Conversely, suppose that S is completely O-simple. By the D = J Theorem, D = J (as
S has Mgr and My, it must have (+)). As S is O-simple, the D = J-classes are {0} and
Sh\ {0}. Let D = 8% {0}. By Corollary 7.16, D contains an idempotent ¢ = ¢*,

Let {R; | i € I} be the set of R-classes in D (so [ indexes the non-zero R-classes). Let
{Ls| A€ A} be the set of L-classes in D (so A indexes the non-zero £-classes).

Denote the H-class RN L, by H,,. Since D contains an idempotent e, D) contains the sub-
group H, (Maximum Subgroup Theorem or Green's Theorem). Without loss of generality
we can assume that both [ and A contain a special symbol 1, and we can also assume that
¢ € Hy. Put ¢ = Hyy, which is a group.

For each A € A let us choose and fix an arbitrary g, € H,, (take g, = €).
Similarly, for each i € I let r, € H,; (take r; = €).
Notice that

e=e’eRqy=>eqy=q,
Thus, by Green's Lemma,

Po: He =G = Hy,,
is a bijection. Now,
e=et e Lri=rie=r.
By the dual of Green's Lemma

Jir, tHiy = Hia
is a bijection. Therefore for any i € I, A € A we have

ﬂ“.lp. (- H{J,
is a bijection.
NoTE. By the definition of p;, and A, , we have that
ﬂpqr‘j"r. = riagy
foreverya € G,i € f and A € A.

So, each element of H;, has a unique expression as rjaqy where a € . Hence the mapping

O: (I xGxA)u{0} =S
given by 00 =0, (i,a, A)# = rjagy is a bijection.
Put py; = qari. If pai 5 0 then gar; D gy D ri. By the rectangular property

eR@pRapriLr;Le
so that ¢,r; € .

0- f &Y



dd VICTORIA GOULD

lll.n’l L_!L
il a i
R | n P,

So, P = (pax) = (qari) is a A x [ matrix over ¢ U {0}. For any i € I, by the 0-simple
Lemma (Lemma 7.15) we have Sr;8 = 8. So, urjv # 0 for some u,v € §. Say, u = ribg
for some k, A and b Then

Pai =i # 0
as rbgarie # 0, Therefore every column of P has a non-zero entry. Dually for rows.
Therefore

M= MY G; I; A P)
is a Rees Matrix Semigroup over a group (. For any @ € M" (# = 0 or 2 is a triple) then

(D)@ = 0f = 0 = 0(xf) = 006,
Also, (x0)# = 2008, For (i,a,A), (k,b,pu) € M" we have

(i it-.ﬂ_j,j,- = (),
(i, apyb, 10)0 i pyy # 0,

~Jo if pop = 0,
K riapaby, A py # 0,
roapaby,,

iy,

(i,a, N)E(k, b, u)b.

Therefore @ is o morphism, and since it is bijective, it is an isomorphism. O

(1, a, A)(k, b, pa))8 = {

8. REGULAR SEMIGROUPS

DeErmNiTION 8.1, We say that a € S is reqular if a = ara for some x € 5. The semigroup
S8 regular if every @ € 8 is regular,
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Examples of regular semigroups: anv band, Rees matrix semigroups, groups.
Examples of non-regular semigroups: (N, +), (Z, #)
Nontrivial null (or zero) semigroups i.e. S = X U {0} with X # @ and all products are 0.
Note that (N, +) has no regular element.
DEFINITION 8.2. An element o’ € S is an nverse of a if
a = aa'a and a’' = a’aa’.
We denote by V(a) the set of inverses of a.
If G is a group then V{a) = {a~'} for alla € G.
CAavuTioN: Inverses need not be unique. For example, in a rectangular band T = I x A,

(1. 7)(k. 6)(1.3) = (1. 7)

(k. €)(i. j) (k. £) = (k. {)
for any (i, 7) and (k, £). So every element is an inverse of every other element.
Lemma 8.3. Ifa € S, then a is reqular & V(a) # 0.

Proof. If V(a) # 0, clearly a is regular. Conversely suppose that a is regular. Then there
exists r € § with a = ara. Put @’ = rax. Then

aa'a = a(rar)a = (axra)ra = ara = a,

a'aa’ = (rar)a(rax) = x(axa)(zraz)
= ra(razr) = z(aza)r = rax = d’.
So a’' € V(a). O

NotEe. If a = ara then

(ax)? = (ar)(ar) = (axa)r = ar

so ar € E(S) and dually, ra € E(S). Moreover

a=ara ar =ar =a R ar,

@ = ara Iﬂ=Iﬂ=?ﬂ£Iﬂ1

DEFiNiTION 8.4, S is inverse if |V(a)| = 1 for all @ € S, i.e. every element has a unique
inverse.

EXAMPLE 8.5.
1

(1) Groups are inverse; V(a) = {a™"}
(2) A rectangular band T is regular; but (as every element of T' is an inverse of every
other element) T is not inverse (unless T is trivial).
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£t

Fioure 5. The egg box diagram of D,.

(3) If S is a band then S is regular as e = ¢* for all e € 5 S need not be inverse.

(4) B is regular because (a,b) = (a,b)(b, a)(a,b) for all (a,b) € B. Furthermore, B is
inverse - see later.

(5) MY is regular (see “Proposition 7.3, Rees Matrix Facts").

(6) Ty is regular (see Exercises).

(7) (M, +) is not regular as, for example 1 # 14+ a + 1 for any a € N.

Theorem 8.6. [Inverse Semigroup Theorem| A semigroup S is inverse iff § is regular and
E(8) s a semilattice (i.e. ef = fe for alle, f € E(S)).

Proof. (<) Let a € §. As § isregular, a has an inverse by Lemma 8.3. Suppose z, y € V{a).
Then

a = ara T = raz a = aya = yay,
(1 (2) i) . < (4) i
so ax,ra,ay, ya € E(S). This gives us that

r - rar [=|l} rlaya)r = (xa)(ya)r = (ya)(xa)r = ylara)x

= i = Ly ) = il ir)] = [F Sy AV = (L = il = .
-y m]yiy} ylay)(ax) = ylaz)lay) = y( }ymy =y

So |[V(a)| = 1 and § is inverse,

Conversely, suppose S is inverse. Let a’ denote the unigue inverse of a € S,
Certainly S is regular. Let ¢ € E(S). Then ¢ is an inverse of e, because ¢ = eee and
¢ = eee, 80 the inverse of any idempotent e is just itself: ¢ = e,

Let e, f € E(S). Let x = (ef)’. Consider the element fre. Then

(fxe)* = (fwe)(fre) = f(zefr)e = fre
as & = (ef)". So fre € E(S) and therefore fre = (fre)'.
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We want to show that fae and ef are mutually inverse:
ef(fre)ef = efivef = efvef = ef,
(fee)ef(fre) = fre* fPre = f(zefz)e = fze.

Therefore we have ef = (fuee)' = fre € E(S), so the product of any two idempotents is
an idempotent, Therefore E(S) is a band, Let ¢, f € E(S). Then

ef(fe)ef = ef*éf = efef =ef
and felef)fe = fe similarly. Therefore we have ef = (fe)' = fe. O
EXAMPLE 8.7,
(1) Let I3 be the Bieyelic Semigroup. Then
E(B) = {(a,a) | a € N},

el

(a,a)(bb) = (tt) = (b b)la a)

where f = max{a,b}. So E(B) is commutative, and since 8 is regular, we have
that it is inverse, Note that {a,bh)" = (b, a).

(2) Tx - we know Tx is regular. For |X| 2 2 let x,y € X with » # y we have
cay €y € E(Tx). Then cqey # cyce 80 Ty is not inverse,

(3) If S is a band, then 5 is regular, Furthermore we have

S is inverse «» ef = fe for all ¢, f € E(S),
sef=feforalle f €S,
4> S is a semilattice,

(4) Let MY = MG T A P). I py, p ave both non-zero, then
(1,951, ), (i P 1) € E(M?)
and
(P s A s 1) = (py s 1) pa s A)

if and only if A = p. So for M" to be inverse, for every i € I there must be exactly
one A € A with py # 0; dually for each k € A there exists exactly one j € I with
Prj # 0.

It is an Erercise to check that, conversely, if the above condition holds then AY
is inverse and isomorphic to a Brandt semigroup.
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8.1. Green’s Theory for Regular D-classes

If e € E(S) then H, is a subgroup of § (by the Maximal Subgroup Theorem or Green's
Theorem). If e D f then |H,| = |H| (by the Corollary to Green's Lemmas). We will show
that H, = Hj.
Lemma 8.8. We have that

(i) If a = axa then azx,ra € E(S) and ax R a L ra,

(ii) {fb'R f € E(S), then b is regular;

(iii) Ifb L f e E(S), then b is reqular.
Proof.

(i) We have already proven this.
(ii) If bR f then fb=b. Also, f = bs for some s € §'. Therefore b = fb = bsb and it
follows that b is regular.
(iii) Dual to (ii).
O

From Lemma 8.8 an element a € 5 is regular if and only if it is R-related to an idempotent.
Dually, a € § is regular if and only if it is C-related to an idempotent.

Lemma 8.9 (Regular D-class Lemma). If a D b then if a is regular, so is b,
Proof. Let a be regular with a Db . Then a R ¢ L b for some ¢ € S.

FIGURE 6. The egg box diagram of D.

There exists ¢ = ¢? with ¢ R a R ¢ by (i) above. By (ii), ¢ is regular. By (i), ¢ £ f = f2
By (iii}, b is regular. O

Corollary B.10. [Corollary to Green's Lemmas/ Let e, f € E(S) with e D f. Then
H, = H_f.

Proof. Suppose e, f € E(S) and e D f. There exists a € S withe Ra L f.

As e R a there exists s € 5! with ¢ = as and ea = a. So a = asa. Put x = fse. Then
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il e

2
LT = ﬂf.‘:'!’.' =fafgE =g =&

and so a = ea = axra. Since a L f there exists t € §! with ta = f. Then

Ta = fsea = fsa = tasa = ta = f.
Also

zar = fz = ffse= fae =x.
So we have
€ = ar a = ara T = 14T f = za.

49

We have e R a and ea = a therefore p, : H, = H, is a bijection. From a £ f and xa = f

we have A, : H, = H; is a bijection. Hence p A, : H, = H; is a bijection.
So we have the diagram

Pa

S

Let h, k€ H,. Then

h(paAz)k(paAz) = (zha)(zka) = zhlar)ka =
rheka = rhka = hk(paAz).

S0, pyA, is an isomorphism and H, = H.



[l VICTORIA GOULD
It is worth noting that the previous proof also allows us to locate the inverses of a regular
element.

Lemma B.11. [fa € S is reqular, and x € V(a), then there exist idempotents ¢ = ar and
[ = xa such that

aReLlzx alfRua

Conversely, if a € 8 and e, [ are idempotents such that
aRe allf,

then there exists @ € V(a) such that ax = ¢ and rva = [ (and then
elLr, [R J'.:I

i £ = L

f = za e

Proof. For the first part, one just has to define ¢ = ar and f = ra. As we have seen, ¢
and f are idempotents satisfying the required properties.

The converse follows directly from the proof of Corollary 8,10 (Corollary to Green's Lem-
1mas), O

EXAMPLE 8,12,

(1) For M" = MG ;A P) we know that M\ {0} is & D-class. We have H,y =
{(i,0.\) | g € G}. W py # 0, Hiy is a group H-class. If pyy, py; # 0 then Hiy = Hj,
(already seen directly).

(2) The Bicyclic Monoid B is bisimple with E(B) = {(a,a) | a € N} and H,,, =
{(a,a)}. Clearly Hiaa) = Hpp.

(3) In T,, then o D 3 & p(a) = p(d) where p(a) = |Im(a)|. By Corollary 810 , if

e, p € E(T,) and p(e) = p(p) = m say, then H, = H . Infact H. = H, = §,,.



