Example 2.21. In \mathcal{T}_3 we have $\text{Im } c_1 = \{1\}$, $\text{Im } I_3 = \{1, 2, 3\}$ and

$$\operatorname{Im} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix} = \{2, 3\}.$$

The following lemma gives a rather useful characterization of the idempotents of a transformation monoid.

Lemma 2.22 (The $E(\mathcal{T}_X)$ Lemma). An element $\varepsilon \in \mathcal{T}_X$ is idempotent $\Leftrightarrow \varepsilon|_{\operatorname{Im}\varepsilon} = I_{\operatorname{Im}\varepsilon}$.

Proof. $\varepsilon|_{\operatorname{Im}\varepsilon} = I_{\operatorname{Im}\varepsilon}$ means that for all $y \in \operatorname{Im}\varepsilon$ we have $y\varepsilon = y$. Note that $\operatorname{Im}\varepsilon = \{x\varepsilon : x \in X\}$.

Then

$$\varepsilon \in E(\mathcal{T}_X) \Leftrightarrow \varepsilon^2 = \varepsilon,$$

$$\Leftrightarrow x\varepsilon^2 = x\varepsilon \qquad \text{for all } x \in X,$$

$$\Leftrightarrow (x\varepsilon)\varepsilon = x\varepsilon \qquad \text{for all } x \in X,$$

$$\Leftrightarrow y\varepsilon = y \qquad \text{for all } y \in \text{Im } \varepsilon,$$

$$\Leftrightarrow \varepsilon|_{\text{Im }\varepsilon} = I_{\text{Im }\varepsilon}.$$

Example 2.23. Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \in \mathcal{T}_3,$$

this has image Im $\alpha = \{2, 3\}$. Now we can see that $2\alpha = 2$ and $3\alpha = 3$. Hence $\alpha \in E(\mathcal{T}_3)$.

EXAMPLE 2.24. We can similarly create another idempotent in \mathcal{T}_7 , first we determine its image: let it be the subset $\{1, 2, 5, 7\}$. Our map must fix these elements, but can map the other elements to any of these:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & & 5 & & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 5 & 7 & 5 & 2 & 7 \end{pmatrix} \in E(\mathcal{T}_7).$$

Using Lemma 2.22 we can now list all the idempotents in \mathcal{T}_3 . We start with the constant maps, i.e. $\varepsilon \in E(\mathcal{T}_3)$ such that $|\operatorname{Im} \varepsilon| = 1$. These are

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}$.

Now consider all elements $\varepsilon \in E(\mathcal{T}_3)$ such that $|\operatorname{Im} \varepsilon| = 2$. These are

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}.$$