0

Definition 2.10. If E(S) = S, then S is a band.

Definition 2.11. If E(S) = S and S is commutative, then S is a semilattice.

Lemma 2.12. Let $E(S) \neq \emptyset$ and suppose ef = fe for all $e, f \in E(S)$. Then E(S) is a subsemigroup of S.

Proof. Let $e, f \in E(S)$. Then

$$(ef)^2 = (ef)(ef) = e(fe)f = e(ef)f = (ee)(ff) = ef$$

0./9

and hence $ef \in E(S)$.

From Lemma 2.12 if $E(S) \neq \emptyset$ and idempotents in S commute then E(S) is a semilattice.

Example 2.13. (1) $E(B) = \{(a, a) \mid a \in \mathbb{N}^0\}$ is a semilattice.

(2) A rectangular band $I \times J$ is not a semilattice (unless |I| = |J| = 1) since $(i, j)(k, \ell) = (k, \ell)(i, j) \Leftrightarrow i = k$ and $j = \ell$.

DEFINITION 2.14. Let $a \in S$. Then we define $\langle a \rangle = \{a^n \mid n \in \mathbb{N}\}$, which is a commutative subsemigroup of S. We call $\langle a \rangle$ the monogenic subsemigroup of S generated by a.

Proposition 2.15. Let $a \in S$. Then either

- (i) $|\langle a \rangle| = \infty$ and $\langle a \rangle \cong (\mathbb{N}, +)$ or
- (ii) $\langle a \rangle$ is finite. In this case $\exists n, r \in \mathbb{N}$ such that

$$\langle a \rangle = \{a, a^2, \dots, a^{n+r-1}\}, |\langle a \rangle| = n+r-1$$

 $\{a^n, a^{n+1}, \dots, a^{n+r-1}\}\$ is a subsemigroup of $\langle a \rangle$ and for all $s, t \in \mathbb{N}^0$,

$$a^{n+s}=a^{n+t} \Leftrightarrow s \equiv t \ (mod \ r).$$

Proof. If $a^i \neq a^j$ for all $i, j \in \mathbb{N}$ with $i \neq j$ then $\theta : \langle a \rangle \to \mathbb{N}$ defined by $a^i \theta = i$ is an isomorphism. This is case (i).

Suppose that in the list of elements a, a^2, a^3, \ldots there is a repetition, i.e. $a^i = a^j$ for some i < j. Let k be least such that $a^k = a^n$ for some n < k. Then k = n + r for some $r \in \mathbb{N}$ — where n is the index of a, r is the period of a. Then the elements $a, a^2, a^3, \ldots, a^{n+r-1}$ are all distinct and $a^n = a^{n+r}$.

DO NOT CANCEL

Let $s, t \in \mathbb{N}^0$ with

$$s = s' + ur, t = t' + vr$$

with

$$0 \le s', t' \le r - 1, u, v \in \mathbb{N}^0$$
.