Theorem 2.6 (The "Cayley Theorem" – for Semigroups). Let S be a semigroup. Then S is embedded in T_{S^1} .

Proof. Let S be a semigroup and set $X = S^1$. We need a 1:1 morphism $S \to \mathcal{T}_X$.

For $s \in S$, we define $\rho_s \in T_X$ by $x\rho_s = xs$.

Now define $\alpha: S \to \mathcal{T}_X$ by $s\alpha = \rho_s$.

We show α is 1:1: If $s\alpha = t\alpha$ then $\rho_s = \rho_t$ and so $x\rho_s = x\rho_t$ for all $x \in S^1$; $1\rho_s = 1\rho_t$ and so 1s = 1t hence s = t and α is 1:1.

We show α is a morphism: Let $u, v \in S$. For any $x \in X$ we have

$$x(\rho_u \rho_v) = (x\rho_u)\rho_v = (xu)\rho_v = (xu)v = x(uv) = x\rho_{uv}.$$

Hence $\rho_u \rho_v = \rho_{uv}$ and so $u\alpha v\alpha = \rho_u \rho_v = \rho_{uv} = (uv)\alpha$. Therefore α is a morphism. Hence $\alpha: S \to \mathcal{T}_X$ is an embedding.

Theorem 2.7 (The "Cayley Theorem" - for Monoids). Let S be a monoid. Then there exists an embedding $S \hookrightarrow \mathcal{T}_S$.

Proof. $S^1 = S$ so $\mathcal{T}_S = \mathcal{T}_{S^1}$. We know α is a semigroup embedding. We need only check $1\alpha = I_X$.

Now $1\alpha = \rho_1$ and for all $x \in X = S$ we have

$$x\rho_1 = x1 = x = xI_X$$

and so $1\alpha = \rho_1 = I_X$.

Theorem 2.8 (The Cayley Theorem - for Groups). Let S be a group. Then there exists an embedding $S \hookrightarrow S_S$.

Proof. Exercise. \Box

2.1. Idempotents

S will always denote a semigroup.

Definition 2.9. $e \in S$ is an idempotent if $e^2 = e$. We put

$$E(S) = \{e \in S \mid e^2 = e\}.$$

Now, E(S) may be empty, e.g. $E(S) = \emptyset$ (N under +).

E(S) may also be S. If $S = I \times J$ is a rectangular band then for any $(i, j) \in S$ we have $(i, j)^2 = (i, j)(i, j) = (i, j)$ and so E(S) = S.

For the bicyclic semigroup B we have from Ex. 1

$$E(B) = \{(a, a) \mid a \in \mathbb{N}^0\}.$$

If S is a monoid then $1 \in E(S)$.

If S is a cancellative monoid, then 1 is the *only* idempotent: for if $e^2 = e$ then ee = e1 and so e = 1 by cancellation. In particular for S a group we have $E(S) = \{1\}$.