DEFINITION 2.3. Let S, T be semigroups then $\theta : S \to T$ is a semigroup (homo) morphism if, for all $a, b \in S$,

$$(ab)\theta = a\theta b\theta.$$

If S, T are monoids then θ is a monoid (homo) morphism if θ is a semigroup morphism and $1_S\theta = 1_T$.

Example 2.4. (1) $\theta: B \to \mathbb{Z}$ given by $(a,b)\theta = a-b$ is a monoid morphism f

$$((a,b)(c,d))\theta = (a-b+t, d-c+t)\theta = (a-b+t) - (d-c+t) = (a-b) + (c-d) = (a,b)\theta + (c,d)\theta.$$

$$t = \max\{b,c\}$$

Furthermore $(0,0)\theta = 0 - 0 = 0$.

(2) Let $T = I \times J$ be the rectangular band then define $\alpha : T \to \mathcal{T}_J$ by $(i, j)\alpha = c_j$. Then we have

$$((i, j)(k, \ell))\alpha = (i, \ell)\alpha,$$

$$= c_{\ell},$$

$$= c_{j}c_{\ell},$$

$$= (i, j)\alpha(k, \ell)\alpha.$$

So, α is a morphism.

Definition 2.5. A bijective morphism is an isomorphism.

Isomorphisms preserve algebraic properties (e.g. commutativity).

See handout for further information.

Embeddings Suppose $\alpha: S \to T$ is a morphism. Then Im α is a subsemigroup (submonoid) of T. If α is 1:1, then $\alpha: S \to \operatorname{Im} \alpha$ is an isomorphism, so that $S \cong \operatorname{Im} \alpha$. We say that S is *embedded* in T.

