B is not cancellative as e.g.

$$(1,1)(2,2) = (2,2)(2,2).$$

Groups are cancellative (indeed, any subsemigroup of a group is cancellative). \mathbb{N}^0 is a cancellative monoid, which is not a group.

Definition 1.15. A zero "0" of a semigroup S is an element such that, for all $a \in S$,

$$0a = a = a0.$$

Adjoining a Zero Let S be a semigroup, then pick a new symbol "0". Let $S^0 = S \cup \{0\}$; define a binary operation \cdot on S^0 by

$$a \cdot b = ab$$
 for all $a \in S$,
 $0 \cdot a = 0 = a \cdot 0$ for all $a \in S$,
 $0 \cdot 0 = 0$.

Then \cdot is associative, so S^0 is a semigroup with zero 0.

Definition 1.16. S^0 is S with a zero adjoined.

2. Standard algebraic tools

DEFINITION 2.1. Let S be a semigroup and $\emptyset \neq T \subseteq S$. Then T is a subsemigroup of S if $a,b \in T \Rightarrow ab \in T$. If S is a monoid then T is a submonoid of S if T is a subsemigroup and $1 \in T$.

Note T is then itself a semigroup/monoid.

EXAMPLE 2.2. (1) (\mathbb{N} , +) is a subsemigroup of (\mathbb{Z} , +). (2) $R = \{c_x \mid x \in X\}$ is a subsemigroup of \mathcal{T}_X , since

$$c_x c_y = c_y$$

for all $x, y \in X$.

R is a right zero semigroup (See Ex.1).

(3) Put E(B) = {(a, a) | a ∈ N⁰}.

From Ex. 1, $E(S) = \{\alpha \in B : \alpha^2 = \alpha\}$

Claim E(B) is a commutative submonoid of B.

Clearly we have $(0,0) \in E(B)$ and for $(a,a),(b,b) \in E(B)$ we have

$$(a, a)(b, b) = (a - a + t, b - b + t)$$
 where $t = \max\{a, b\}$,
= (t, t) ,
= $(b, b)(a, a)$.